We present a time-parallel numerical zoom method for parabolic multiscale problems. A fine-finite element solver is defined on a patch where multiscale effects are localized. A coarse finite-element solver, based on a coarser time-space discretization, and possibly smoother than the fine one, is defined on the whole domain of the partial differential equation. The coupling between fine and coarse solvers is carried out with an adaptation of the Parareal algorithm. We detail our numerical method and illustrate it with a numerical experiment.
Nous présentons une méthode de zoom numérique parallèle en temps pour les problèmes paraboliques multi-échelles. Sur un patch d'éléments finis qui contient les détails multi-échelles, nous définissons un solveur fin. Un solveur éléments finis grossier, basé sur une discrétisation spatiale et temporelle plus grossière, et éventuellement plus lisse que le fin, est défini sur le domaine complet de l'équation aux dérivées partielles. L'algorithme Parareal est adapté pour coupler ces solveurs fin et grossier. Nous décrivons dans le détail notre méthode, et nous l'illustrons via une expérience numérique.
Accepted:
Published online:
Franz Chouly 1; Alexei Lozinski 1
@article{CRMATH_2014__352_6_535_0, author = {Franz Chouly and Alexei Lozinski}, title = {Parareal multi-model numerical zoom for parabolic multiscale problems}, journal = {Comptes Rendus. Math\'ematique}, pages = {535--540}, publisher = {Elsevier}, volume = {352}, number = {6}, year = {2014}, doi = {10.1016/j.crma.2014.03.018}, language = {en}, }
Franz Chouly; Alexei Lozinski. Parareal multi-model numerical zoom for parabolic multiscale problems. Comptes Rendus. Mathématique, Volume 352 (2014) no. 6, pp. 535-540. doi : 10.1016/j.crma.2014.03.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.03.018/
[1] Numerical zoom for multiscale problems with an application to nuclear waste disposal, J. Comput. Phys., Volume 224 (2007) no. 1, pp. 403-413
[2] Multiscale coupling of finite element and lattice Boltzmann methods for time dependent problems (submitted for publication) | HAL
[3] A “parareal” time discretization for non-linear PDE's with application to the pricing of an American put, Lecture Notes in Computational Science and Engineering, vol. 23, Springer Verlag, Berlin, 2002, pp. 189-202
[4] Hybrid finite element methods for the Signorini problem, Math. Comput., Volume 72 (2003) no. 243, pp. 1117-1145 (electronic)
[5] Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid–structure applications, Int. J. Numer. Methods Eng., Volume 58 (2003), pp. 1397-1434
[6] Analysis of the parareal time-parallel time-integration method, SIAM J. Sci. Comput., Volume 29 (2007), pp. 556-578
[7] Finite element approximation of multi-scale elliptic problems using patches of elements, Numer. Math., Volume 101 (2005) no. 4, pp. 663-687
[8] Freefem++ documentation, 2012 http://www.freefem.org/ff++ (third edition, version, 3.19-1, webpage)
[9] P. Laborde, A. Lozinski, Numerical zoom for multi-scale and multi-model problems, in preparation.
[10] A micro-macro parareal algorithm: application to singularly perturbed ordinary differential equations, SIAM J. Sci. Comput., Volume 35 (2013) no. 4, p. A1951-A1986
[11] Résolution d'EDP par un schéma en temps «pararéel», C. R. Acad. Sci. Paris, Ser. I, Volume 332 (2001), pp. 661-668
[12] Méthodes numériques et modélisation pour certains problèmes multi-échelles, Université Paul-Sabatier, Toulouse-3, Toulouse, France, 2010 (Habilitation à diriger des recherches)
[13] A chimera grid scheme (K.N. Chis; U. Ghia, eds.), Advances in Grid Generation, ASME FED, vol. 5, 1983
Cited by Sources:
Comments - Policy