We introduce and analyze a simple nonconforming quadrilateral finite element and then we derive optimal a priori error estimates for arbitrary regular quadrilaterals. The idea of extension to some non-conforming elements for three-dimensional hexahedrons is also presented.
Dans ce travail, nous présentons et analysons un élément fini non conforme en quadrangles. Nous obtenons une estimation d'erreur a priori optimale pour des quadrangles réguliers arbitraires. Nous présentons également l'idée d'extension tridimensionnelle de cet élément.
Accepted:
Published online:
Boujemâa Achchab 1; Abdellatif Agouzal 2; Khalid Bouihat 1
@article{CRMATH_2014__352_6_529_0, author = {Boujem\^aa Achchab and Abdellatif Agouzal and Khalid Bouihat}, title = {A simple nonconforming quadrilateral finite element}, journal = {Comptes Rendus. Math\'ematique}, pages = {529--533}, publisher = {Elsevier}, volume = {352}, number = {6}, year = {2014}, doi = {10.1016/j.crma.2014.03.020}, language = {en}, }
Boujemâa Achchab; Abdellatif Agouzal; Khalid Bouihat. A simple nonconforming quadrilateral finite element. Comptes Rendus. Mathématique, Volume 352 (2014) no. 6, pp. 529-533. doi : 10.1016/j.crma.2014.03.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.03.020/
[1] A posteriori error estimators for nonconforming approximation, Int. J. Numer. Anal. Model., Volume 5 (2008) no. 1, pp. 77-85
[2] On the implementation of mixed methods as nonconforming methods for second-order elliptic problems, Math. Comput., Volume 64 (1995) no. 211, pp. 943-972
[3] Approximation by quadrilateral finite elements, Math. Comput., Volume 71 (2002), pp. 909-922
[4] Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, ESAIM Math. Model. Numer. Anal., Volume 7 (1973) no. R3, pp. 33-75
[5] Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems, RAIRO Math. Model. Anal. Numer., Volume 33 (1999), pp. 747-770
[6] Nonconforming elements in the mixed finite element method, J. Comput. Math., Volume 2 (1984) no. 3, pp. 223-233
[7] A finite element approximation of Navier–Stokes equations using nonconforming elements, J. Comput. Math., Volume 2 (1984) no. 1, pp. 77-88
[8] Finite Element Methods for Navier–Stokes Equations, Springer Verlag, 1986
[9] Constrained quadrilateral nonconforming rotated -element, J. Comput. Math., Volume 23 (2005), pp. 561-586
[10] -nonconforming quadrilateral finite element methods for second-order elliptic problems, SIAM J. Numer. Anal., Volume 41 (2003), pp. 624-640
[11] Simple nonconforming quadrilateral Stokes element, Numer. Methods Partial Differ. Equ., Volume 8 (1992) no. 2, pp. 97-111
[12] A class of arbitrarily convex quadrilateral elements for solving Navier–Stokes equations by nonconforming elements, Math. Numer. Sin., Volume 8 (1986) no. 3, pp. 258-274 (in Chinese)
Cited by Sources:
Comments - Policy