We show that multipliers of second-order Riesz transforms on products of discrete Abelian groups enjoy the estimate , where , . This estimate is sharp for certain multipliers such as on products of infinite groups. For other multipliers such as , the best possible estimate is given by the Choi constant. Those are the first known sharp estimates of discrete Calderón–Zygmund operators.
Nous montrons que les carrés des transformations de Riesz sur des produits de groupes abéliens discrets ont une norme bornée par la constante , avec , . Cette constante est optimale dans le cas de goupes infinis pour certains opérateurs, parmi lesquels . Pour d'autres opérateurs, parmi lesquels , la constante optimale est donnée par la constante de Choi. Il s'agit des premières estimations optimales connues d'opérateurs discrets de type Calderón–Zygmund.
@article{CRMATH_2014__352_6_503_0, author = {Komla Domelevo and Stefanie Petermichl}, title = {Sharp $ {L}^{p}$ estimates for discrete second-order {Riesz} transforms}, journal = {Comptes Rendus. Math\'ematique}, pages = {503--506}, publisher = {Elsevier}, volume = {352}, number = {6}, year = {2014}, doi = {10.1016/j.crma.2014.03.022}, language = {en}, }
Komla Domelevo; Stefanie Petermichl. Sharp $ {L}^{p}$ estimates for discrete second-order Riesz transforms. Comptes Rendus. Mathématique, Volume 352 (2014) no. 6, pp. 503-506. doi : 10.1016/j.crma.2014.03.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.03.022/
[1] Sharp inequalities for martingales and stochastic integrals, Palaiseau, 1987 (Astérisque), Volume 157–158 (1988), pp. 75-94
[2] A sharp inequality for martingale transforms and the unconditional basis constant of a monotone basis in , Trans. Amer. Math. Soc., Volume 330 (1992) no. 2, pp. 509-529
[3] Dimension free estimates for discrete Riesz transforms on products of Abelian groups, Adv. Math., Volume 185 (2004) no. 2, pp. 289-327
[4] Transformations de Riesz pour les lois gaussiennes, Seminar on Probability, XVIII, Lecture Notes in Mathematics, vol. 1059, Springer, Berlin, 1984, pp. 179-193
[5] Riesz transforms: a simpler analytic proof of P.-A. Meyer's inequality, Séminaire de probabilités, XXII, Lecture Notes in Mathematics, vol. 1321, Springer, Berlin, 1988, pp. 485-501
[6] Some results in harmonic analysis in , for , Bull. Amer. Math. Soc. (N.S.), Volume 9 (1983) no. 1, pp. 71-73
[7] Heat extension of the Beurling operator and estimates for its norm, St. Petersburg Math. J., Volume 15 (2004) no. 4, pp. 563-573
Cited by Sources:
Comments - Policy