Comptes Rendus
Group theory/Geometry
The multiplicities of the equivariant index of twisted Dirac operators
Comptes Rendus. Mathématique, Volume 352 (2014) no. 9, pp. 673-677.

In this note, we give a geometric expression for the multiplicities of the equivariant index of a Dirac operator twisted by a line bundle.

Le but de cette note est de donner une expression géométrique pour les multiplicités de l'indice équivariant de l'opérateur de Dirac tordu par un fibré en lignes.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.05.001
@article{CRMATH_2014__352_9_673_0,
     author = {Paul-\'Emile Paradan and Mich\`ele Vergne},
     title = {The multiplicities of the equivariant index of twisted {Dirac} operators},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {673--677},
     publisher = {Elsevier},
     volume = {352},
     number = {9},
     year = {2014},
     doi = {10.1016/j.crma.2014.05.001},
     language = {en},
}
TY  - JOUR
AU  - Paul-Émile Paradan
AU  - Michèle Vergne
TI  - The multiplicities of the equivariant index of twisted Dirac operators
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 673
EP  - 677
VL  - 352
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2014.05.001
LA  - en
ID  - CRMATH_2014__352_9_673_0
ER  - 
%0 Journal Article
%A Paul-Émile Paradan
%A Michèle Vergne
%T The multiplicities of the equivariant index of twisted Dirac operators
%J Comptes Rendus. Mathématique
%D 2014
%P 673-677
%V 352
%N 9
%I Elsevier
%R 10.1016/j.crma.2014.05.001
%G en
%F CRMATH_2014__352_9_673_0
Paul-Émile Paradan; Michèle Vergne. The multiplicities of the equivariant index of twisted Dirac operators. Comptes Rendus. Mathématique, Volume 352 (2014) no. 9, pp. 673-677. doi : 10.1016/j.crma.2014.05.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.05.001/

[1] A. Cannas da Silva; Y. Karshon; S. Tolman Quantization of presymplectic manifolds and circle actions, Trans. Amer. Math. Soc., Volume 352 (2000), pp. 525-552

[2] M. Duflo Construction de Représentations Unitaires d'un Groupe de Lie, CIME, Cortona, 1980

[3] M. Grossberg; Y. Karshon Bott towers, complete integrability, and the extended character of representations, Duke Math. J., Volume 76 (1994), pp. 23-58

[4] M. Grossberg; Y. Karshon Equivariant index and the moment map for completely integrable torus actions, Adv. Math., Volume 133 (1998), pp. 185-223

[5] V. Guillemin; S. Sternberg Geometric quantization and multiplicities of group representations, Invent. Math., Volume 67 (1982), pp. 515-538

[6] Y. Karshon; S. Tolman The moment map and line bundles over presymplectic toric manifolds, J. Differ. Geom., Volume 38 (1993), pp. 465-484

[7] E. Meinrenken Symplectic surgery and the Spinc-Dirac operator, Adv. Math., Volume 134 (1998), pp. 240-277

[8] E. Meinrenken; R. Sjamaar Singular reduction and quantization, Topology, Volume 38 (1999), pp. 699-763

[9] P.-E. Paradan Localization of the Riemann–Roch character, J. Funct. Anal., Volume 187 (2001), pp. 442-509

[10] P.-E. Paradan Spin-quantization commutes with reduction, J. Symplectic Geom., Volume 10 (2012), pp. 389-422

[11] Y. Tian; W. Zhang An analytic proof of the geometric quantization conjecture of Guillemin–Sternberg, Invent. Math., Volume 132 (1998), pp. 229-259

Cited by Sources:

Comments - Policy