[Multiplicités de l'indice équivariant de l'opérateur de Dirac twisté]
In this note, we give a geometric expression for the multiplicities of the equivariant index of a Dirac operator twisted by a line bundle.
Le but de cette note est de donner une expression géométrique pour les multiplicités de l'indice équivariant de l'opérateur de Dirac tordu par un fibré en lignes.
@article{CRMATH_2014__352_9_673_0, author = {Paul-\'Emile Paradan and Mich\`ele Vergne}, title = {The multiplicities of the equivariant index of twisted {Dirac} operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {673--677}, publisher = {Elsevier}, volume = {352}, number = {9}, year = {2014}, doi = {10.1016/j.crma.2014.05.001}, language = {en}, }
Paul-Émile Paradan; Michèle Vergne. The multiplicities of the equivariant index of twisted Dirac operators. Comptes Rendus. Mathématique, Volume 352 (2014) no. 9, pp. 673-677. doi : 10.1016/j.crma.2014.05.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.05.001/
[1] Quantization of presymplectic manifolds and circle actions, Trans. Amer. Math. Soc., Volume 352 (2000), pp. 525-552
[2] Construction de Représentations Unitaires d'un Groupe de Lie, CIME, Cortona, 1980
[3] Bott towers, complete integrability, and the extended character of representations, Duke Math. J., Volume 76 (1994), pp. 23-58
[4] Equivariant index and the moment map for completely integrable torus actions, Adv. Math., Volume 133 (1998), pp. 185-223
[5] Geometric quantization and multiplicities of group representations, Invent. Math., Volume 67 (1982), pp. 515-538
[6] The moment map and line bundles over presymplectic toric manifolds, J. Differ. Geom., Volume 38 (1993), pp. 465-484
[7] Symplectic surgery and the Spinc-Dirac operator, Adv. Math., Volume 134 (1998), pp. 240-277
[8] Singular reduction and quantization, Topology, Volume 38 (1999), pp. 699-763
[9] Localization of the Riemann–Roch character, J. Funct. Anal., Volume 187 (2001), pp. 442-509
[10] Spin-quantization commutes with reduction, J. Symplectic Geom., Volume 10 (2012), pp. 389-422
[11] An analytic proof of the geometric quantization conjecture of Guillemin–Sternberg, Invent. Math., Volume 132 (1998), pp. 229-259
- Geochemical Characteristics and Origin of Formation Water From the Upper Triassic Xujiahe Tight Sandstone in the Xiaoquan-Fenggu Structural Belt, Western Sichuan Depression, China, Frontiers in Earth Science, Volume 9 (2021) | DOI:10.3389/feart.2021.793170
- A geometric realisation of tempered representations restricted to maximal compact subgroups, Mathematische Annalen, Volume 378 (2020) no. 1-2, pp. 97-152 | DOI:10.1007/s00208-020-02006-4 | Zbl:1454.22011
- A geometric formula for multiplicities of
-types of tempered representations, Transactions of the American Mathematical Society, Volume 372 (2019) no. 12, pp. 8553-8586 | DOI:10.1090/tran/7857 | Zbl:1429.22015 - Witten non abelian localization for equivariant
-theory, and the theorem, Memoirs of the American Mathematical Society, 1257, Providence, RI: American Mathematical Society (AMS), 2019 | DOI:10.1090/memo/1257 | Zbl:1439.58015 - Admissible coadjoint orbits for compact Lie groups, Transformation Groups, Volume 23 (2018) no. 3, pp. 875-892 | DOI:10.1007/s00031-017-9457-2 | Zbl:1404.22013
- Equivariant indices of
-Dirac operators for proper moment maps, Duke Mathematical Journal, Volume 166 (2017) no. 6, pp. 1125-1178 | DOI:10.1215/00127094-3792923 | Zbl:1370.58010 - An equivariant index for proper actions. III: The invariant and discrete series indices, Differential Geometry and its Applications, Volume 49 (2016), pp. 1-22 | DOI:10.1016/j.difgeo.2016.07.003 | Zbl:1352.53042
- The index theory on non-compact manifolds with proper group action, Journal of Geometry and Physics, Volume 98 (2015), pp. 275-284 | DOI:10.1016/j.geomphys.2015.08.014 | Zbl:1329.58021
Cité par 8 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier