We consider an infinite strip perforated along a curve by small holes. In this perforated domain, we consider a scalar second-order elliptic differential operator subject to classical boundary conditions on the holes. Assuming that the perforation is non-periodic, we describe possible homogenized problems and prove the norm-resolvent convergence of the perturbed operator to a homogenized one. We also provide estimates for the rate of the convergence.
On considère une bande infinie avec une famille de petits trous placés le long d'une courbe. Dans ce domaine perforé, on étudie un opérateur scalaire elliptique du second ordre, avec des conditions aux limites classiques aux bords des trous. En supposant que l'emplacement des trous n'est pas périodique, on décrit les problèmes homogénéisés possibles et on démontre la convergence au sens de la norme de la résolvante des opérateurs perturbés vers les opérateurs homogénéisés. On obtient également des estimées pour le taux de convergence.
Accepted:
Published online:
Denis Borisov 1, 2; Giuseppe Cardone 3; Tiziana Durante 4
@article{CRMATH_2014__352_9_679_0, author = {Denis Borisov and Giuseppe Cardone and Tiziana Durante}, title = {Norm-resolvent convergence for elliptic operators in domain with perforation along curve}, journal = {Comptes Rendus. Math\'ematique}, pages = {679--683}, publisher = {Elsevier}, volume = {352}, number = {9}, year = {2014}, doi = {10.1016/j.crma.2014.07.003}, language = {en}, }
TY - JOUR AU - Denis Borisov AU - Giuseppe Cardone AU - Tiziana Durante TI - Norm-resolvent convergence for elliptic operators in domain with perforation along curve JO - Comptes Rendus. Mathématique PY - 2014 SP - 679 EP - 683 VL - 352 IS - 9 PB - Elsevier DO - 10.1016/j.crma.2014.07.003 LA - en ID - CRMATH_2014__352_9_679_0 ER -
%0 Journal Article %A Denis Borisov %A Giuseppe Cardone %A Tiziana Durante %T Norm-resolvent convergence for elliptic operators in domain with perforation along curve %J Comptes Rendus. Mathématique %D 2014 %P 679-683 %V 352 %N 9 %I Elsevier %R 10.1016/j.crma.2014.07.003 %G en %F CRMATH_2014__352_9_679_0
Denis Borisov; Giuseppe Cardone; Tiziana Durante. Norm-resolvent convergence for elliptic operators in domain with perforation along curve. Comptes Rendus. Mathématique, Volume 352 (2014) no. 9, pp. 679-683. doi : 10.1016/j.crma.2014.07.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.07.003/
[1] Asymptotic Analysis for Periodic Structures, North-Holland Publ. Co., Amsterdam, 1978
[2] Homogenization with corrector for periodic differential operators. Approximation of solutions in the Sobolev class , St. Petersburg Math. J., Volume 18 (2007), pp. 857-955
[3] Waveguide with non-periodically alternating Dirichlet and Robin conditions: homogenization and asymptotics, Z. Angew. Math. Phys. V, Volume 64 (2013), pp. 439-472
[4] Homogenization of the planar waveguide with frequently alternating boundary conditions, J. Phys. A, Volume 42 (2009), p. 365205
[5] Uniform resolvent convergence for a strip with fast oscillating boundary, J. Differ. Equ., Volume 255 (2013), pp. 4378-4402
[6] Interior error estimate for periodic homogenization, Asymptot. Anal., Volume 4 (2006), pp. 61-79
[7] Convergence rates in for elliptic homogenization problems, Arch. Ration. Mech. Anal., Volume 203 (2012), pp. 1009-1036
[8] On boundary-value problems in domains perforated along manifolds, Russ. Math. Surv., Volume 52 (1997), pp. 838-839
[9] Some estimates from homogenized elasticity problems, Dokl. Math., Volume 73 (2006), pp. 102-106
[10] Non Homogeneous Media and Vibration Theory, Lecture Notes in Physics, vol. 127, Springer-Verlag, Berlin, New York, 1980
[11] Spectral method in homogenization theory, Proc. Steklov Inst. Math., Volume 250 (2005), pp. 85-94
Cited by Sources:
Comments - Policy