Comptes Rendus
Partial differential equations/Functional analysis
Norm-resolvent convergence for elliptic operators in domain with perforation along curve
Comptes Rendus. Mathématique, Volume 352 (2014) no. 9, pp. 679-683.

We consider an infinite strip perforated along a curve by small holes. In this perforated domain, we consider a scalar second-order elliptic differential operator subject to classical boundary conditions on the holes. Assuming that the perforation is non-periodic, we describe possible homogenized problems and prove the norm-resolvent convergence of the perturbed operator to a homogenized one. We also provide estimates for the rate of the convergence.

On considère une bande infinie avec une famille de petits trous placés le long d'une courbe. Dans ce domaine perforé, on étudie un opérateur scalaire elliptique du second ordre, avec des conditions aux limites classiques aux bords des trous. En supposant que l'emplacement des trous n'est pas périodique, on décrit les problèmes homogénéisés possibles et on démontre la convergence au sens de la norme de la résolvante des opérateurs perturbés vers les opérateurs homogénéisés. On obtient également des estimées pour le taux de convergence.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.07.003

Denis Borisov 1, 2; Giuseppe Cardone 3; Tiziana Durante 4

1 Institute of Mathematics CS USC RAS, Chernyshevsky str. 112, Ufa, 450008, Russian Federation
2 Bashkir State Pedagogical University, October St. 3a, Ufa, 450000, Russian Federation
3 University of Sannio, Department of Engineering, Corso Garibaldi, 107, 82100 Benevento, Italy
4 University of Salerno, Department of Information and Electrical Engineering and Applied Mathematics, Via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy
@article{CRMATH_2014__352_9_679_0,
     author = {Denis Borisov and Giuseppe Cardone and Tiziana Durante},
     title = {Norm-resolvent convergence for elliptic operators in domain with perforation along curve},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {679--683},
     publisher = {Elsevier},
     volume = {352},
     number = {9},
     year = {2014},
     doi = {10.1016/j.crma.2014.07.003},
     language = {en},
}
TY  - JOUR
AU  - Denis Borisov
AU  - Giuseppe Cardone
AU  - Tiziana Durante
TI  - Norm-resolvent convergence for elliptic operators in domain with perforation along curve
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 679
EP  - 683
VL  - 352
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2014.07.003
LA  - en
ID  - CRMATH_2014__352_9_679_0
ER  - 
%0 Journal Article
%A Denis Borisov
%A Giuseppe Cardone
%A Tiziana Durante
%T Norm-resolvent convergence for elliptic operators in domain with perforation along curve
%J Comptes Rendus. Mathématique
%D 2014
%P 679-683
%V 352
%N 9
%I Elsevier
%R 10.1016/j.crma.2014.07.003
%G en
%F CRMATH_2014__352_9_679_0
Denis Borisov; Giuseppe Cardone; Tiziana Durante. Norm-resolvent convergence for elliptic operators in domain with perforation along curve. Comptes Rendus. Mathématique, Volume 352 (2014) no. 9, pp. 679-683. doi : 10.1016/j.crma.2014.07.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.07.003/

[1] A. Bensoussan; J.-L. Lions; G. Papanicolaou Asymptotic Analysis for Periodic Structures, North-Holland Publ. Co., Amsterdam, 1978

[2] M.Sh. Birman; T.A. Suslina Homogenization with corrector for periodic differential operators. Approximation of solutions in the Sobolev class H1(Rd), St. Petersburg Math. J., Volume 18 (2007), pp. 857-955

[3] D. Borisov; R. Bunoiu; G. Cardone Waveguide with non-periodically alternating Dirichlet and Robin conditions: homogenization and asymptotics, Z. Angew. Math. Phys. V, Volume 64 (2013), pp. 439-472

[4] D. Borisov; G. Cardone Homogenization of the planar waveguide with frequently alternating boundary conditions, J. Phys. A, Volume 42 (2009), p. 365205

[5] D. Borisov; G. Cardone; L. Faella; C. Perugia Uniform resolvent convergence for a strip with fast oscillating boundary, J. Differ. Equ., Volume 255 (2013), pp. 4378-4402

[6] G. Griso Interior error estimate for periodic homogenization, Asymptot. Anal., Volume 4 (2006), pp. 61-79

[7] C.E. Kenig; F. Lin; Z. Shen Convergence rates in L2 for elliptic homogenization problems, Arch. Ration. Mech. Anal., Volume 203 (2012), pp. 1009-1036

[8] M. Lobo; O.A. Oleinik; M.E. Pérez; T.A. Shaposhnikova On boundary-value problems in domains perforated along manifolds, Russ. Math. Surv., Volume 52 (1997), pp. 838-839

[9] S.E. Pastukhova Some estimates from homogenized elasticity problems, Dokl. Math., Volume 73 (2006), pp. 102-106

[10] É. Sánches-Palencia Non Homogeneous Media and Vibration Theory, Lecture Notes in Physics, vol. 127, Springer-Verlag, Berlin, New York, 1980

[11] V.V. Zhikov Spectral method in homogenization theory, Proc. Steklov Inst. Math., Volume 250 (2005), pp. 85-94

Cited by Sources:

Comments - Policy