We propose a hybrid version of the Fast VPP method for dilatable fluids: collocated variables/staggered projection. The necessary conditions for its effective application are outlined. Numerical results illustrate the significant computation-cost reduction to reach stationary regimes.
On propose une version hybride de la méthode Fast-VPP en écoulement dilatable : variables colocalisées et projection décalée. On précise les conditions nécessaires à son application efficace. Des résultats numériques illustrent le gain en effort de calcul pour l'obtention de régimes stationnaires.
Accepted:
Published online:
Michel Belliard 1
@article{CRMATH_2014__352_9_761_0, author = {Michel Belliard}, title = {A hybrid collocated/staggered version of the {Fast} {Vector} {Penalty-Projection} method for dilatable fluids}, journal = {Comptes Rendus. Math\'ematique}, pages = {761--766}, publisher = {Elsevier}, volume = {352}, number = {9}, year = {2014}, doi = {10.1016/j.crma.2014.05.004}, language = {en}, }
TY - JOUR AU - Michel Belliard TI - A hybrid collocated/staggered version of the Fast Vector Penalty-Projection method for dilatable fluids JO - Comptes Rendus. Mathématique PY - 2014 SP - 761 EP - 766 VL - 352 IS - 9 PB - Elsevier DO - 10.1016/j.crma.2014.05.004 LA - en ID - CRMATH_2014__352_9_761_0 ER -
Michel Belliard. A hybrid collocated/staggered version of the Fast Vector Penalty-Projection method for dilatable fluids. Comptes Rendus. Mathématique, Volume 352 (2014) no. 9, pp. 761-766. doi : 10.1016/j.crma.2014.05.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.05.004/
[1] Vector Penalty-Projection methods for the solution of unsteady incompressible flows, Aussois, France, Wiley (8–13 June 2008), pp. 169-176
[2] A spectacular Vector Penalty-Projection method for Darcy and Navier–Stokes problems, Prague, Czech Republic (1–23 July 2011)
[3] A numerical method for solving incompressible viscous flow problems, J. Comput. Phys., Volume 2 (1967), pp. 12-26
[4] Numerical solution of the Navier–Stokes equations, Math. Comp., Volume 22 (1968), pp. 745-762
[5] Colocated finite volume schemes for fluid flows, Commun. Comput. Phys., Volume 4 (2008) no. 1, pp. 1-25
[6] Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, Studies in Mathematics and Its Applications, vol. 15, North-Holland, Amsterdam, 1983
[7] Sur l'approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires, Arch. Ration. Mech. Anal., Volume 32 (1969), pp. 135-153
Cited by Sources:
Comments - Policy