In this paper, we first formulate the Weil explicit formula of prime number theory for cuspidal automorphic L-functions of . Then, we prove some conditional results about the vanishing order at the central point of . This enables to yield an estimate for the height of the lowest zero of on the critical line in terms of the analytic conductor.
Dans cet article, nous formulons d'abord les formules explicites de Weil de la théorie des nombres premiers pour les fonctions L de formes automorphes cuspidales de . Ensuite, nous montrons des résultats conditionnels concernant l'ordre d'annulation de au point , ce qui permet de donner une estimation de la hauteur du plus petit zéro de sur la droite critique en termes de conducteur analytique.
Accepted:
Published online:
Sami Omar 1
@article{CRMATH_2014__352_7-8_551_0, author = {Sami Omar}, title = {On small zeros of automorphic {\protect\emph{L}-functions}}, journal = {Comptes Rendus. Math\'ematique}, pages = {551--556}, publisher = {Elsevier}, volume = {352}, number = {7-8}, year = {2014}, doi = {10.1016/j.crma.2014.06.004}, language = {en}, }
Sami Omar. On small zeros of automorphic L-functions. Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 551-556. doi : 10.1016/j.crma.2014.06.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.06.004/
[1] On A. Weil's explicit formula, J. Reine Angew. Math., Volume 323 (1981), pp. 139-152
[2] The role of the Ramanujan conjecture in analytic number theory, Bull. Amer. Math. Soc., Volume 50 (2013), pp. 267-320
[3] Zeta Functions of Simple Algebras, Lecture Notes in Mathematics, vol. 260, Springer-Verlag, Berlin, New York, 1972
[4] Analytic Number Theory, Colloquium Publications, vol. 53, American Mathematical Society, 2004
[5] Perspectives on the analytic theory of L-functions, Visions in Mathematics, 2000, pp. 705-741 Geom. Funct. Anal. (Special Volume – GAFA2000)
[6] On Euler products and the classification of automorphic representations, Amer. J. Math., Volume 103 (1981), pp. 499-588
[7] On the generalized Ramanujan conjecture for , Proc. Sympos. Pure Math., vol. 66, part 2, 1999, pp. 301-310
[8] Formules explicites et minorations de conducteurs de variétés algébriques, Compos. Math., Volume 58 (1986), pp. 209-232
[9] Majoration du premier zéro de la fonction zêta de Dedekind, Acta Arith., Volume 95 (2000), pp. 61-65
Cited by Sources:
Comments - Policy