Comptes Rendus
Number theory
On small zeros of automorphic L-functions
Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 551-556.

In this paper, we first formulate the Weil explicit formula of prime number theory for cuspidal automorphic L-functions L(s,π) of GLd. Then, we prove some conditional results about the vanishing order at the central point of L(s,π). This enables to yield an estimate for the height of the lowest zero of L(s,π) on the critical line in terms of the analytic conductor.

Dans cet article, nous formulons d'abord les formules explicites de Weil de la théorie des nombres premiers pour les fonctions L de formes automorphes cuspidales L(s,π) de GLd. Ensuite, nous montrons des résultats conditionnels concernant l'ordre d'annulation de L(s,π) au point s=1/2, ce qui permet de donner une estimation de la hauteur du plus petit zéro de L(s,π) sur la droite critique en termes de conducteur analytique.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.06.004

Sami Omar 1

1 Faculty of Sciences of Tunis, Department of Mathematics, 2092 Campus universitaire El Manar Tunis, Tunisia
@article{CRMATH_2014__352_7-8_551_0,
     author = {Sami Omar},
     title = {On small zeros of automorphic {\protect\emph{L}-functions}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {551--556},
     publisher = {Elsevier},
     volume = {352},
     number = {7-8},
     year = {2014},
     doi = {10.1016/j.crma.2014.06.004},
     language = {en},
}
TY  - JOUR
AU  - Sami Omar
TI  - On small zeros of automorphic L-functions
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 551
EP  - 556
VL  - 352
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2014.06.004
LA  - en
ID  - CRMATH_2014__352_7-8_551_0
ER  - 
%0 Journal Article
%A Sami Omar
%T On small zeros of automorphic L-functions
%J Comptes Rendus. Mathématique
%D 2014
%P 551-556
%V 352
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2014.06.004
%G en
%F CRMATH_2014__352_7-8_551_0
Sami Omar. On small zeros of automorphic L-functions. Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 551-556. doi : 10.1016/j.crma.2014.06.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.06.004/

[1] K. Barner On A. Weil's explicit formula, J. Reine Angew. Math., Volume 323 (1981), pp. 139-152

[2] V. Blomer; F. Brumley The role of the Ramanujan conjecture in analytic number theory, Bull. Amer. Math. Soc., Volume 50 (2013), pp. 267-320

[3] R. Godement; H. Jacquet Zeta Functions of Simple Algebras, Lecture Notes in Mathematics, vol. 260, Springer-Verlag, Berlin, New York, 1972

[4] H. Iwaniec; E. Kowalski Analytic Number Theory, Colloquium Publications, vol. 53, American Mathematical Society, 2004

[5] H. Iwaniec; P. Sarnak Perspectives on the analytic theory of L-functions, Visions in Mathematics, 2000, pp. 705-741 Geom. Funct. Anal. (Special Volume – GAFA2000)

[6] H. Jacquet; J. Shalika On Euler products and the classification of automorphic representations, Amer. J. Math., Volume 103 (1981), pp. 499-588

[7] W. Luo; Z. Rudnik; P. Sarnak On the generalized Ramanujan conjecture for GL(n), Proc. Sympos. Pure Math., vol. 66, part 2, 1999, pp. 301-310

[8] J.-F. Mestre Formules explicites et minorations de conducteurs de variétés algébriques, Compos. Math., Volume 58 (1986), pp. 209-232

[9] S. Omar Majoration du premier zéro de la fonction zêta de Dedekind, Acta Arith., Volume 95 (2000), pp. 61-65

Cited by Sources:

Comments - Policy