Group theory
Finite metacyclic groups as active sums of cyclic subgroups
Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 567-571.

The notion of active sum provides an analogue for groups of what the direct sum is for abelian groups. One natural question then is which groups are the active sum of a family of cyclic subgroups. Many groups have been found to give a positive answer to this question, while the case of finite metacyclic groups remained unknown. In this note we show that every finite metacyclic group can be recovered as the active sum of a discrete family of cyclic subgroups.

La notion de somme active fournit un analogue pour les groupes de ce qu'est la somme directe pour les groupes abéliens. Une question naturelle est alors de déterminer quels groupes sont la somme active d'une famille de sous-groupes cycliques. De nombreux groupes possèdent cette propriété, mais la question demeurait ouverte pour les groupes finis métacycliques. Dans cette note, nous montrons que tout groupe fini métacyclique s'obtient comme la somme active d'une famille discrète de sous-groupes cycliques.

Accepted:
Published online:
DOI: 10.1016/j.crma.2014.06.006

Alejandro Díaz-Barriga 1; Francisco González-Acuña 1; Francisco Marmolejo 1; Nadia Romero 2

1 Instituto de Matemáticas, UNAM, Mexico
2 MATHGEOM, EPFL, Switzerland
@article{CRMATH_2014__352_7-8_567_0,
author = {Alejandro D{\'\i}az-Barriga and Francisco Gonz\'alez-Acu\~na and Francisco Marmolejo and Nadia Romero},
title = {Finite metacyclic groups as active sums of cyclic subgroups},
journal = {Comptes Rendus. Math\'ematique},
pages = {567--571},
publisher = {Elsevier},
volume = {352},
number = {7-8},
year = {2014},
doi = {10.1016/j.crma.2014.06.006},
language = {en},
}
TY  - JOUR
AU  - Alejandro Díaz-Barriga
AU  - Francisco González-Acuña
AU  - Francisco Marmolejo
TI  - Finite metacyclic groups as active sums of cyclic subgroups
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 567
EP  - 571
VL  - 352
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2014.06.006
LA  - en
ID  - CRMATH_2014__352_7-8_567_0
ER  -
%0 Journal Article
%A Alejandro Díaz-Barriga
%A Francisco González-Acuña
%A Francisco Marmolejo
%T Finite metacyclic groups as active sums of cyclic subgroups
%J Comptes Rendus. Mathématique
%D 2014
%P 567-571
%V 352
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2014.06.006
%G en
%F CRMATH_2014__352_7-8_567_0
Alejandro Díaz-Barriga; Francisco González-Acuña; Francisco Marmolejo; Nadia Romero. Finite metacyclic groups as active sums of cyclic subgroups. Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, pp. 567-571. doi : 10.1016/j.crma.2014.06.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.06.006/

[1] W. Chachólski; E. Damian; E.D. Farjoun; Y. Segev The A-core and A-cover of a group, J. Algebra, Volume 321 (2009), pp. 631-666

[2] A. Díaz-Barriga; F. González-Acuña; F. Marmolejo; L. Román Active sums I, Rev. Mat. Complut., Volume 17 (2004) no. 2, pp. 287-319

[3] A. Díaz-Barriga; F. González-Acuña; F. Marmolejo; L. Román Active sums II, Osaka J. Math., Volume 43 (2006), pp. 371-399

[4] E.D. Farjoun; R. Göbel; Y. Segev Cellular covers of groups, J. Pure Appl. Algebra, Volume 208 (2007), pp. 61-76

[5] T. Ganea Homologie et extensions centrales de groupes, C. R. Acad. Sci. Paris, Ser. I, Volume 266 (1968), pp. 556-558

[6] C.E. Hempel Metacyclic groups, Commun. Algebra, Volume 28 (2000) no. 8, pp. 3865-3897

[7] D.L. Johnson Presentations of Groups, Lond. Math. Soc. Stud. Texts, vol. 15, London Mathematical Society, 1990

[8] G. Karpilovsky The Schur Multiplier, Clarendon Press, Oxford, 1987

[9] H.S. Sim Metacyclic groups of odd order, Proc. Lond. Math. Soc., Volume 69 (1994) no. 3, pp. 47-71

[10] F. Tomás Un análogo de suma directa para sistemas de subgrupos normales, An. Inst. Mat., Volume 13 (1973), pp. 161-186

Cited by Sources: