In this Note, we solve a nonzero-sum stochastic differential game (NZSDG) with bang–bang-type equilibrium controls by using backward stochastic differential equations (BSDEs). The generator is multi-dimensional and discontinuous with respect to z.
Dans cette Note, nous résolvons un jeu différentiel stochastique de somme non nulle avec contrôles d'équilibre de type bang–bang, en utilisant les équations différentielles stochastiques rétrogrades (EDSRs). Le générateur est multi-dimensionnel et discontinu par rapport à z.
Accepted:
Published online:
Said Hamadène 1; Rui Mu 1, 2
@article{CRMATH_2014__352_9_699_0, author = {Said Hamad\`ene and Rui Mu}, title = {Bang{\textendash}bang-type {Nash} equilibrium point for {Markovian} nonzero-sum stochastic differential game}, journal = {Comptes Rendus. Math\'ematique}, pages = {699--706}, publisher = {Elsevier}, volume = {352}, number = {9}, year = {2014}, doi = {10.1016/j.crma.2014.06.011}, language = {en}, }
TY - JOUR AU - Said Hamadène AU - Rui Mu TI - Bang–bang-type Nash equilibrium point for Markovian nonzero-sum stochastic differential game JO - Comptes Rendus. Mathématique PY - 2014 SP - 699 EP - 706 VL - 352 IS - 9 PB - Elsevier DO - 10.1016/j.crma.2014.06.011 LA - en ID - CRMATH_2014__352_9_699_0 ER -
Said Hamadène; Rui Mu. Bang–bang-type Nash equilibrium point for Markovian nonzero-sum stochastic differential game. Comptes Rendus. Mathématique, Volume 352 (2014) no. 9, pp. 699-706. doi : 10.1016/j.crma.2014.06.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.06.011/
[1] On the instability of the feedback equilibrium payoff in a nonzero-sum differential game on the line, Advances in Dynamic Game Theory, Birkhäuser, Boston, MA, USA, 2007, pp. 57-67
[2] Existence and uniqueness of a Nash equilibrium feedback for a simple nonzero-sum differential game, Int. J. Game Theory, Volume 32 (2003) no. 1, pp. 33-71
[3] Backward stochastic differential equations in finance, Math. Finance, Volume 7 (1997) no. 1, pp. 1-71
[4] Nonzero sum linear-quadratic stochastic differential games and backward–forward equations, Stoch. Anal. Appl., Volume 17 (1999) no. 1, pp. 117-130
[5] BSDEs with continuous coefficients and stochastic differential games, Pitman Research Notes in Mathematics Series, 1997, pp. 115-128
[6] A Stochastic Maximum Principle for Optimal Control of Diffusions, John Wiley & Sons, Inc., 1986
[7] Nonzero-sum stochastic differential games with discontinuous feedback, SIAM J. Control Optim., Volume 43 (2004) no. 4, pp. 1222-1233
[8] On open- and closed-loop bang–bang control in nonzero-sum differential games, SIAM J. Control Optim., Volume 40 (2002) no. 4, pp. 1087-1106
[9] Adapted solution of a backward stochastic differential equation, Syst. Control Lett., Volume 14 (1990) no. 1, pp. 55-61
Cited by Sources:
Comments - Policy