Comptes Rendus
Optimal control/Game theory
Bang–bang-type Nash equilibrium point for Markovian nonzero-sum stochastic differential game
Comptes Rendus. Mathématique, Volume 352 (2014) no. 9, pp. 699-706.

In this Note, we solve a nonzero-sum stochastic differential game (NZSDG) with bang–bang-type equilibrium controls by using backward stochastic differential equations (BSDEs). The generator is multi-dimensional and discontinuous with respect to z.

Dans cette Note, nous résolvons un jeu différentiel stochastique de somme non nulle avec contrôles d'équilibre de type bang–bang, en utilisant les équations différentielles stochastiques rétrogrades (EDSRs). Le générateur est multi-dimensionnel et discontinu par rapport à z.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.06.011

Said Hamadène 1; Rui Mu 1, 2

1 Université du Maine, LMM, avenue Olivier-Messiaen, 72085 Le Mans cedex 9, France
2 School of Mathematics, Shandong University, Jinan 250100, China
@article{CRMATH_2014__352_9_699_0,
     author = {Said Hamad\`ene and Rui Mu},
     title = {Bang{\textendash}bang-type {Nash} equilibrium point for {Markovian} nonzero-sum stochastic differential game},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {699--706},
     publisher = {Elsevier},
     volume = {352},
     number = {9},
     year = {2014},
     doi = {10.1016/j.crma.2014.06.011},
     language = {en},
}
TY  - JOUR
AU  - Said Hamadène
AU  - Rui Mu
TI  - Bang–bang-type Nash equilibrium point for Markovian nonzero-sum stochastic differential game
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 699
EP  - 706
VL  - 352
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2014.06.011
LA  - en
ID  - CRMATH_2014__352_9_699_0
ER  - 
%0 Journal Article
%A Said Hamadène
%A Rui Mu
%T Bang–bang-type Nash equilibrium point for Markovian nonzero-sum stochastic differential game
%J Comptes Rendus. Mathématique
%D 2014
%P 699-706
%V 352
%N 9
%I Elsevier
%R 10.1016/j.crma.2014.06.011
%G en
%F CRMATH_2014__352_9_699_0
Said Hamadène; Rui Mu. Bang–bang-type Nash equilibrium point for Markovian nonzero-sum stochastic differential game. Comptes Rendus. Mathématique, Volume 352 (2014) no. 9, pp. 699-706. doi : 10.1016/j.crma.2014.06.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.06.011/

[1] P. Cardaliaguet On the instability of the feedback equilibrium payoff in a nonzero-sum differential game on the line, Advances in Dynamic Game Theory, Birkhäuser, Boston, MA, USA, 2007, pp. 57-67

[2] P. Cardaliaguet; P. Slawomir Existence and uniqueness of a Nash equilibrium feedback for a simple nonzero-sum differential game, Int. J. Game Theory, Volume 32 (2003) no. 1, pp. 33-71

[3] N. El-Karoui; S. Peng; M.-C. Quenez Backward stochastic differential equations in finance, Math. Finance, Volume 7 (1997) no. 1, pp. 1-71

[4] S. Hamadène Nonzero sum linear-quadratic stochastic differential games and backward–forward equations, Stoch. Anal. Appl., Volume 17 (1999) no. 1, pp. 117-130

[5] S. Hamadène; J.-P. Lepeltier; S. Peng BSDEs with continuous coefficients and stochastic differential games, Pitman Research Notes in Mathematics Series, 1997, pp. 115-128

[6] U.G. Haussmann A Stochastic Maximum Principle for Optimal Control of Diffusions, John Wiley & Sons, Inc., 1986

[7] P. Mannucci Nonzero-sum stochastic differential games with discontinuous feedback, SIAM J. Control Optim., Volume 43 (2004) no. 4, pp. 1222-1233

[8] G.J. Olsder On open- and closed-loop bang–bang control in nonzero-sum differential games, SIAM J. Control Optim., Volume 40 (2002) no. 4, pp. 1087-1106

[9] E. Pardoux; S. Peng Adapted solution of a backward stochastic differential equation, Syst. Control Lett., Volume 14 (1990) no. 1, pp. 55-61

Cited by Sources:

Comments - Policy