[Sur un jeu différentiel stochastique de somme non nulle avec contrôles de type bang–bang]
Dans cette Note, nous résolvons un jeu différentiel stochastique de somme non nulle avec contrôles d'équilibre de type bang–bang, en utilisant les équations différentielles stochastiques rétrogrades (EDSRs). Le générateur est multi-dimensionnel et discontinu par rapport à z.
In this Note, we solve a nonzero-sum stochastic differential game (NZSDG) with bang–bang-type equilibrium controls by using backward stochastic differential equations (BSDEs). The generator is multi-dimensional and discontinuous with respect to z.
Accepté le :
Publié le :
Said Hamadène 1 ; Rui Mu 1, 2
@article{CRMATH_2014__352_9_699_0, author = {Said Hamad\`ene and Rui Mu}, title = {Bang{\textendash}bang-type {Nash} equilibrium point for {Markovian} nonzero-sum stochastic differential game}, journal = {Comptes Rendus. Math\'ematique}, pages = {699--706}, publisher = {Elsevier}, volume = {352}, number = {9}, year = {2014}, doi = {10.1016/j.crma.2014.06.011}, language = {en}, }
TY - JOUR AU - Said Hamadène AU - Rui Mu TI - Bang–bang-type Nash equilibrium point for Markovian nonzero-sum stochastic differential game JO - Comptes Rendus. Mathématique PY - 2014 SP - 699 EP - 706 VL - 352 IS - 9 PB - Elsevier DO - 10.1016/j.crma.2014.06.011 LA - en ID - CRMATH_2014__352_9_699_0 ER -
Said Hamadène; Rui Mu. Bang–bang-type Nash equilibrium point for Markovian nonzero-sum stochastic differential game. Comptes Rendus. Mathématique, Volume 352 (2014) no. 9, pp. 699-706. doi : 10.1016/j.crma.2014.06.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.06.011/
[1] On the instability of the feedback equilibrium payoff in a nonzero-sum differential game on the line, Advances in Dynamic Game Theory, Birkhäuser, Boston, MA, USA, 2007, pp. 57-67
[2] Existence and uniqueness of a Nash equilibrium feedback for a simple nonzero-sum differential game, Int. J. Game Theory, Volume 32 (2003) no. 1, pp. 33-71
[3] Backward stochastic differential equations in finance, Math. Finance, Volume 7 (1997) no. 1, pp. 1-71
[4] Nonzero sum linear-quadratic stochastic differential games and backward–forward equations, Stoch. Anal. Appl., Volume 17 (1999) no. 1, pp. 117-130
[5] BSDEs with continuous coefficients and stochastic differential games, Pitman Research Notes in Mathematics Series, 1997, pp. 115-128
[6] A Stochastic Maximum Principle for Optimal Control of Diffusions, John Wiley & Sons, Inc., 1986
[7] Nonzero-sum stochastic differential games with discontinuous feedback, SIAM J. Control Optim., Volume 43 (2004) no. 4, pp. 1222-1233
[8] On open- and closed-loop bang–bang control in nonzero-sum differential games, SIAM J. Control Optim., Volume 40 (2002) no. 4, pp. 1087-1106
[9] Adapted solution of a backward stochastic differential equation, Syst. Control Lett., Volume 14 (1990) no. 1, pp. 55-61
- Bang–bang control for a class of optimal stochastic control problems with symmetric cost functional, Automatica, Volume 149 (2023), p. 110849 | DOI:10.1016/j.automatica.2022.110849
- Linear-quadratic-singular stochastic differential games and applications, Decisions in Economics and Finance (2023) | DOI:10.1007/s10203-023-00422-0
- Dynamic Set Values for Nonzero-Sum Games with Multiple Equilibriums, Mathematics of Operations Research, Volume 47 (2022) no. 1, p. 616 | DOI:10.1287/moor.2021.1143
- A Class of Stochastic Games and Moving Free Boundary Problems, SIAM Journal on Control and Optimization, Volume 60 (2022) no. 2, p. 758 | DOI:10.1137/20m1322558
- Radner equilibrium and systems of quadratic BSDEs with discontinuous generators, The Annals of Applied Probability, Volume 32 (2022) no. 5 | DOI:10.1214/21-aap1765
- Optimal Auction Duration: A Price Formation Viewpoint, Operations Research, Volume 69 (2021) no. 6, p. 1734 | DOI:10.1287/opre.2021.2113
- AHEAD: Ad Hoc Electronic Auction Design, SSRN Electronic Journal (2020) | DOI:10.2139/ssrn.3705514
- Discontinuous Nash equilibrium points for nonzero-sum stochastic differential games, Stochastic Processes and their Applications, Volume 130 (2020) no. 11, p. 6901 | DOI:10.1016/j.spa.2020.07.003
- Stochastic Games for Fuel Follower Problem:
versus Mean Field Game, SIAM Journal on Control and Optimization, Volume 57 (2019) no. 1, p. 659 | DOI:10.1137/17m1159531 - Approximate Public-Signal Correlated Equilibria for Nonzero-Sum Differential Games, SIAM Journal on Control and Optimization, Volume 57 (2019) no. 1, p. 743 | DOI:10.1137/17m1161403
- Regularity of Nash payoffs of Markovian nonzero-sum stochastic differential games, Stochastics, Volume 91 (2019) no. 5, p. 695 | DOI:10.1080/17442508.2018.1540627
- Nash equilibrium points of recursive nonzero-sum stochastic differential games with unbounded coefficients and related multiple dimensional BSDEs, Mathematical Control Related Fields, Volume 7 (2017) no. 2, p. 289 | DOI:10.3934/mcrf.2017010
Cité par 12 documents. Sources : Crossref
Commentaires - Politique