Comptes Rendus
Optimal control/Calculus of variations
Dynamic programming for mean-field type control
Comptes Rendus. Mathématique, Volume 352 (2014) no. 9, pp. 707-713.

For mean-field type control problems, stochastic dynamic programming requires adaptation. We propose to reformulate the problem as a distributed control problem by assuming that the PDF ρ of the stochastic process exists. Then we show that Bellman's principle applies to the dynamic programming value function V(τ,ρτ), where the dependency on ρτ is functional as in P.-L. Lions' analysis of mean-field games (2007) [10]. We derive HJB equations and apply them to two examples, a portfolio optimization and a systemic risk model.

Pour les problèmes de contrôle stochastique à champs moyen, la programmation dynamique ne s'applique pas sans adaptation ; mais si l'on reformule le problème avec l'équation de Fokker–Planck, on peut le faire en utilisant une fonctionnelle valeur {τ,ρτ()}V(τ,ρτ) comme dans l'analyse des problèmes de jeux à champs moyen par P.-L. Lions (2007) [10]. Les résultats sont appliqués à un problème d'optimisation de portefeuille et à un problème de risque systémique.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.07.008

Mathieu Laurière 1; Olivier Pironneau 1

1 LJLL, Université Pierre-et-Marie-Curie (Paris-6), 4, place Jussieu, 75005 Paris, France
@article{CRMATH_2014__352_9_707_0,
     author = {Mathieu Lauri\`ere and Olivier Pironneau},
     title = {Dynamic programming for mean-field type control},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {707--713},
     publisher = {Elsevier},
     volume = {352},
     number = {9},
     year = {2014},
     doi = {10.1016/j.crma.2014.07.008},
     language = {en},
}
TY  - JOUR
AU  - Mathieu Laurière
AU  - Olivier Pironneau
TI  - Dynamic programming for mean-field type control
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 707
EP  - 713
VL  - 352
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2014.07.008
LA  - en
ID  - CRMATH_2014__352_9_707_0
ER  - 
%0 Journal Article
%A Mathieu Laurière
%A Olivier Pironneau
%T Dynamic programming for mean-field type control
%J Comptes Rendus. Mathématique
%D 2014
%P 707-713
%V 352
%N 9
%I Elsevier
%R 10.1016/j.crma.2014.07.008
%G en
%F CRMATH_2014__352_9_707_0
Mathieu Laurière; Olivier Pironneau. Dynamic programming for mean-field type control. Comptes Rendus. Mathématique, Volume 352 (2014) no. 9, pp. 707-713. doi : 10.1016/j.crma.2014.07.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.07.008/

[1] D. Andersson; B. Derviche A maximum principle for SDEs of mean-field type, Appl. Math. Optim., Volume 63 (2011), pp. 341-356

[2] A. Bensoussan; J. Frehse Control and Nash games with mean field effect, Chin. Ann. Math., Ser. B, Volume 34B (2013) no. 2, pp. 161-192

[3] A. Bensoussan; J. Frehse; S.C.P. Yam Mean-Field Games and Mean-Field Type Control, Springer Briefs in Mathematics, 2014

[4] A. Bensoussan; J. Frehse; S.C.P. Yam The master equation in mean-field theory, Asymptot. Anal. (2014) (in press)

[5] W.H. Fleming; H.M. Soner Controlled Markov Process and Viscosity Solutions, Springer, 2006

[6] J. Garnier; G. Papanicolaou; Tzu-Wei Yang Large deviations for a mean field model of systemic risk, SIAM J. Financ. Math., Volume 4 (2013) no. 1, pp. 151-184

[7] O. Guéant; M. Lasry; P.-L. Lions Mean field games and applications, Paris–Princeton Lectures on Mathematical Finance, Lecture Notes in Mathematics, Springer, 2011

[8] F. Hecht New development in freefem++, J. Numer. Math., Volume 20 (2012) no. 3–4, pp. 251-265

[9] J.-M. Lasry; P.-L. Lions Mean-field games, Jpn. J. Math., Volume 2 (2007), pp. 229-260

[10] P.-L. Lions Mean-field games, Cours au Collège de France (2007–2008) http://www.college-de-france.fr/site/pierre-louis-lions/course-2007-2008_1.htm

[11] A. Neufeld; M. Nutz Nonlinear Lévy processes and their characteristics | arXiv

[12] B. Øksendal; A. Sulem Applied Stochastic Control of Jump Diffusions, Springer, 2005

[13] Min Shen; G. Turinici Liquidity generated by heterogeneous beliefs and costly estimations, Netw. Heterog. Media, Volume 7 (2012) no. 2, pp. 349-361

[14] N. Touzi Optimal Stochastic Control, Stochastic Target Problems and Backard SDE, Field Inst. Monogr., vol. 29, Springer, 2013

[15] Jiongmin Yong; Xun Yu Zhou Stochastic Control, Applications of Mathematics Series, vol. 43, Springer, 1999

Cited by Sources:

Comments - Policy