For mean-field type control problems, stochastic dynamic programming requires adaptation. We propose to reformulate the problem as a distributed control problem by assuming that the PDF ρ of the stochastic process exists. Then we show that Bellman's principle applies to the dynamic programming value function , where the dependency on is functional as in P.-L. Lions' analysis of mean-field games (2007) [10]. We derive HJB equations and apply them to two examples, a portfolio optimization and a systemic risk model.
Pour les problèmes de contrôle stochastique à champs moyen, la programmation dynamique ne s'applique pas sans adaptation ; mais si l'on reformule le problème avec l'équation de Fokker–Planck, on peut le faire en utilisant une fonctionnelle valeur comme dans l'analyse des problèmes de jeux à champs moyen par P.-L. Lions (2007) [10]. Les résultats sont appliqués à un problème d'optimisation de portefeuille et à un problème de risque systémique.
Accepted:
Published online:
Mathieu Laurière 1; Olivier Pironneau 1
@article{CRMATH_2014__352_9_707_0, author = {Mathieu Lauri\`ere and Olivier Pironneau}, title = {Dynamic programming for mean-field type control}, journal = {Comptes Rendus. Math\'ematique}, pages = {707--713}, publisher = {Elsevier}, volume = {352}, number = {9}, year = {2014}, doi = {10.1016/j.crma.2014.07.008}, language = {en}, }
Mathieu Laurière; Olivier Pironneau. Dynamic programming for mean-field type control. Comptes Rendus. Mathématique, Volume 352 (2014) no. 9, pp. 707-713. doi : 10.1016/j.crma.2014.07.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.07.008/
[1] A maximum principle for SDEs of mean-field type, Appl. Math. Optim., Volume 63 (2011), pp. 341-356
[2] Control and Nash games with mean field effect, Chin. Ann. Math., Ser. B, Volume 34B (2013) no. 2, pp. 161-192
[3] Mean-Field Games and Mean-Field Type Control, Springer Briefs in Mathematics, 2014
[4] The master equation in mean-field theory, Asymptot. Anal. (2014) (in press)
[5] Controlled Markov Process and Viscosity Solutions, Springer, 2006
[6] Large deviations for a mean field model of systemic risk, SIAM J. Financ. Math., Volume 4 (2013) no. 1, pp. 151-184
[7] Mean field games and applications, Paris–Princeton Lectures on Mathematical Finance, Lecture Notes in Mathematics, Springer, 2011
[8] New development in freefem++, J. Numer. Math., Volume 20 (2012) no. 3–4, pp. 251-265
[9] Mean-field games, Jpn. J. Math., Volume 2 (2007), pp. 229-260
[10] Mean-field games, Cours au Collège de France (2007–2008) http://www.college-de-france.fr/site/pierre-louis-lions/course-2007-2008_1.htm
[11] Nonlinear Lévy processes and their characteristics | arXiv
[12] Applied Stochastic Control of Jump Diffusions, Springer, 2005
[13] Liquidity generated by heterogeneous beliefs and costly estimations, Netw. Heterog. Media, Volume 7 (2012) no. 2, pp. 349-361
[14] Optimal Stochastic Control, Stochastic Target Problems and Backard SDE, Field Inst. Monogr., vol. 29, Springer, 2013
[15] Stochastic Control, Applications of Mathematics Series, vol. 43, Springer, 1999
Cited by Sources:
Comments - Policy