Comptes Rendus
Optimal control/Calculus of variations
Dynamic programming for mean-field type control
[Programmation dynamique pour les problèmes de contrôle à champs moyen]
Comptes Rendus. Mathématique, Volume 352 (2014) no. 9, pp. 707-713.

For mean-field type control problems, stochastic dynamic programming requires adaptation. We propose to reformulate the problem as a distributed control problem by assuming that the PDF ρ of the stochastic process exists. Then we show that Bellman's principle applies to the dynamic programming value function V(τ,ρτ), where the dependency on ρτ is functional as in P.-L. Lions' analysis of mean-field games (2007) [10]. We derive HJB equations and apply them to two examples, a portfolio optimization and a systemic risk model.

Pour les problèmes de contrôle stochastique à champs moyen, la programmation dynamique ne s'applique pas sans adaptation ; mais si l'on reformule le problème avec l'équation de Fokker–Planck, on peut le faire en utilisant une fonctionnelle valeur {τ,ρτ()}V(τ,ρτ) comme dans l'analyse des problèmes de jeux à champs moyen par P.-L. Lions (2007) [10]. Les résultats sont appliqués à un problème d'optimisation de portefeuille et à un problème de risque systémique.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.07.008

Mathieu Laurière 1 ; Olivier Pironneau 1

1 LJLL, Université Pierre-et-Marie-Curie (Paris-6), 4, place Jussieu, 75005 Paris, France
@article{CRMATH_2014__352_9_707_0,
     author = {Mathieu Lauri\`ere and Olivier Pironneau},
     title = {Dynamic programming for mean-field type control},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {707--713},
     publisher = {Elsevier},
     volume = {352},
     number = {9},
     year = {2014},
     doi = {10.1016/j.crma.2014.07.008},
     language = {en},
}
TY  - JOUR
AU  - Mathieu Laurière
AU  - Olivier Pironneau
TI  - Dynamic programming for mean-field type control
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 707
EP  - 713
VL  - 352
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2014.07.008
LA  - en
ID  - CRMATH_2014__352_9_707_0
ER  - 
%0 Journal Article
%A Mathieu Laurière
%A Olivier Pironneau
%T Dynamic programming for mean-field type control
%J Comptes Rendus. Mathématique
%D 2014
%P 707-713
%V 352
%N 9
%I Elsevier
%R 10.1016/j.crma.2014.07.008
%G en
%F CRMATH_2014__352_9_707_0
Mathieu Laurière; Olivier Pironneau. Dynamic programming for mean-field type control. Comptes Rendus. Mathématique, Volume 352 (2014) no. 9, pp. 707-713. doi : 10.1016/j.crma.2014.07.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.07.008/

[1] D. Andersson; B. Derviche A maximum principle for SDEs of mean-field type, Appl. Math. Optim., Volume 63 (2011), pp. 341-356

[2] A. Bensoussan; J. Frehse Control and Nash games with mean field effect, Chin. Ann. Math., Ser. B, Volume 34B (2013) no. 2, pp. 161-192

[3] A. Bensoussan; J. Frehse; S.C.P. Yam Mean-Field Games and Mean-Field Type Control, Springer Briefs in Mathematics, 2014

[4] A. Bensoussan; J. Frehse; S.C.P. Yam The master equation in mean-field theory, Asymptot. Anal. (2014) (in press)

[5] W.H. Fleming; H.M. Soner Controlled Markov Process and Viscosity Solutions, Springer, 2006

[6] J. Garnier; G. Papanicolaou; Tzu-Wei Yang Large deviations for a mean field model of systemic risk, SIAM J. Financ. Math., Volume 4 (2013) no. 1, pp. 151-184

[7] O. Guéant; M. Lasry; P.-L. Lions Mean field games and applications, Paris–Princeton Lectures on Mathematical Finance, Lecture Notes in Mathematics, Springer, 2011

[8] F. Hecht New development in freefem++, J. Numer. Math., Volume 20 (2012) no. 3–4, pp. 251-265

[9] J.-M. Lasry; P.-L. Lions Mean-field games, Jpn. J. Math., Volume 2 (2007), pp. 229-260

[10] P.-L. Lions Mean-field games, Cours au Collège de France (2007–2008) http://www.college-de-france.fr/site/pierre-louis-lions/course-2007-2008_1.htm

[11] A. Neufeld; M. Nutz Nonlinear Lévy processes and their characteristics | arXiv

[12] B. Øksendal; A. Sulem Applied Stochastic Control of Jump Diffusions, Springer, 2005

[13] Min Shen; G. Turinici Liquidity generated by heterogeneous beliefs and costly estimations, Netw. Heterog. Media, Volume 7 (2012) no. 2, pp. 349-361

[14] N. Touzi Optimal Stochastic Control, Stochastic Target Problems and Backard SDE, Field Inst. Monogr., vol. 29, Springer, 2013

[15] Jiongmin Yong; Xun Yu Zhou Stochastic Control, Applications of Mathematics Series, vol. 43, Springer, 1999

  • Erhan Bayraktar; Nicole Bäuerle; Ali Devran Kara Finite Approximations for Mean-Field Type Multi-agent Control and Their Near Optimality, Applied Mathematics Optimization, Volume 92 (2025) no. 1 | DOI:10.1007/s00245-025-10279-x
  • Alain Bensoussan; Ho Man Tai; Sheung Chi Phillip Yam Mean field type control problems, some Hilbert-space-valued FBSDES, and related equations, ESAIM: Control, Optimisation and Calculus of Variations, Volume 31 (2025), p. 33 | DOI:10.1051/cocv/2025022
  • Yurii Averboukh; Dmitry Khlopin Pontryagin maximum principle for the deterministic mean field type optimal control problem via the Lagrangian approach, Journal of Differential Equations, Volume 430 (2025), p. 113205 | DOI:10.1016/j.jde.2025.02.076
  • Liangquan Zhang; Xun Li Stochastic McKean-Vlasov Control Problem with Regime-Switching and Its Applications, Journal of Systems Science and Complexity, Volume 38 (2025) no. 4, p. 1437 | DOI:10.1007/s11424-025-4283-4
  • Hidekazu Yoshioka Generalized replicator dynamics based on mean-field pairwise comparison dynamic, Mathematics and Computers in Simulation, Volume 236 (2025), p. 200 | DOI:10.1016/j.matcom.2025.04.010
  • Christa Cuchiero; Christoph Reisinger; Stefan Rigger Optimal bailout strategies resulting from the drift controlled supercooled Stefan problem, Annals of Operations Research, Volume 336 (2024) no. 1-2, p. 1315 | DOI:10.1007/s10479-023-05293-7
  • Liangquan Zhang Stochastic recursive optimal control of McKean-Vlasov type: A viscosity solution approach, Journal of Differential Equations, Volume 409 (2024), p. 334 | DOI:10.1016/j.jde.2024.07.015
  • Erhan Bayraktar; Ali Devran Kara Infinite Horizon Average Cost Optimality Criteria for Mean-Field Control, SIAM Journal on Control and Optimization, Volume 62 (2024) no. 5, p. 2776 | DOI:10.1137/23m1603649
  • Jan Rems; Nacira Agram Deep learning for conditional McKean-Vlasov Jump diffusions, SSRN Electronic Journal (2024) | DOI:10.2139/ssrn.4760864
  • Takehiro Tottori; Tetsuya J. Kobayashi Forward-Backward Sweep Method for the System of HJB-FP Equations in Memory-Limited Partially Observable Stochastic Control, Entropy, Volume 25 (2023) no. 2, p. 208 | DOI:10.3390/e25020208
  • Yuhan Kang; Haoxin Wang; BaekGyu Kim; Jiang Xie; Xiao-Ping Zhang; Zhu Han Time Efficient Offloading Optimization in Automotive Multi-Access Edge Computing Networks Using Mean-Field Games, IEEE Transactions on Vehicular Technology, Volume 72 (2023) no. 5, p. 6460 | DOI:10.1109/tvt.2022.3229888
  • Haotian Gu; Xin Guo; Xiaoli Wei; Renyuan Xu Dynamic Programming Principles for Mean-Field Controls with Learning, Operations Research, Volume 71 (2023) no. 4, p. 1040 | DOI:10.1287/opre.2022.2395
  • Nacira Agram; Bernt Øksendal Stochastic Fokker–Planck Equations for Conditional McKean–Vlasov Jump Diffusions and Applications to Optimal Control, SIAM Journal on Control and Optimization, Volume 61 (2023) no. 3, p. 1472 | DOI:10.1137/21m1461034
  • Yanbo Chen; Tianyang Nie; Shujun Wang Fully-coupled mean-field FBSDE and maximum principle for related optimal control problem, Systems Control Letters, Volume 177 (2023), p. 105550 | DOI:10.1016/j.sysconle.2023.105550
  • Mao Fabrice Djete; Dylan Possamaï; Xiaolu Tan McKean–Vlasov Optimal Control: Limit Theory and Equivalence Between Different Formulations, Mathematics of Operations Research, Volume 47 (2022) no. 4, p. 2891 | DOI:10.1287/moor.2021.1232
  • Mao Fabrice Djete; Dylan Possamaï; Xiaolu Tan McKean–Vlasov optimal control: The dynamic programming principle, The Annals of Probability, Volume 50 (2022) no. 2 | DOI:10.1214/21-aop1548
  • Daisuke Inoue; Yuji Ito; Takahito Kashiwabara; Norikazu Saito; Hiroaki Yoshida, 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (2021), p. 982 | DOI:10.1109/smc52423.2021.9658947
  • Alekos Cecchin Finite stateN-agent and mean field control problems, ESAIM: Control, Optimisation and Calculus of Variations, Volume 27 (2021), p. 31 | DOI:10.1051/cocv/2021032
  • Yurii Averboukh A stability property in mean field type differential games, Journal of Mathematical Analysis and Applications, Volume 498 (2021) no. 1, p. 124940 | DOI:10.1016/j.jmaa.2021.124940
  • Yurii Averboukh Lattice approximations of the first-order mean field type differential games, Nonlinear Differential Equations and Applications NoDEA, Volume 28 (2021) no. 6 | DOI:10.1007/s00030-021-00727-2
  • Julian Barreiro-Gomez; Hamidou Tembine; Leonardo Stella; Dario Bauso; Patrizio Colaneri, 2020 59th IEEE Conference on Decision and Control (CDC) (2020), p. 3860 | DOI:10.1109/cdc42340.2020.9303958
  • Julian Barreiro-Gomez; Hamidou Tembine A Tutorial On Mean-Field-Type Games and Risk-Aware Controllers, Annual Reviews in Control, Volume 50 (2020), p. 317 | DOI:10.1016/j.arcontrol.2020.05.003
  • Noureddine Toumi; Julian Barreiro-Gomez; Tyrone E. Duncan; Hamidou Tembine Berge equilibrium in linear-quadratic mean-field-type games, Journal of the Franklin Institute, Volume 357 (2020) no. 15, p. 10861 | DOI:10.1016/j.jfranklin.2020.08.019
  • Julio Backhoff-Veraguas; Daniel Lacker; Ludovic Tangpi Nonexponential Sanov and Schilder theorems on Wiener space: BSDEs, Schrödinger problems and control, The Annals of Applied Probability, Volume 30 (2020) no. 3 | DOI:10.1214/19-aap1531
  • Yurii Averboukh Krasovskii–Subbotin Approach to Mean Field Type Differential Games, Dynamic Games and Applications, Volume 9 (2019) no. 3, p. 573 | DOI:10.1007/s13235-018-0282-6
  • M. FORNASIER; S. LISINI; C. ORRIERI; G. SAVARÉ Mean-field optimal control as Gamma-limit of finite agent controls, European Journal of Applied Mathematics, Volume 30 (2019) no. 6, p. 1153 | DOI:10.1017/s0956792519000044
  • Weinan E; Jiequn Han; Qianxiao Li A mean-field optimal control formulation of deep learning, Research in the Mathematical Sciences, Volume 6 (2019) no. 1 | DOI:10.1007/s40687-018-0172-y
  • Yurii Averboukh Target problem for mean field type differential game, IFAC-PapersOnLine, Volume 51 (2018) no. 32, p. 654 | DOI:10.1016/j.ifacol.2018.11.499
  • René Carmona; François Delarue Optimal Control of SDEs of McKean-Vlasov Type, Probabilistic Theory of Mean Field Games with Applications I, Volume 83 (2018), p. 513 | DOI:10.1007/978-3-319-58920-6_6
  • René Carmona; François Delarue MFGs with a Common Noise: Strong and Weak Solutions, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 107 | DOI:10.1007/978-3-319-56436-4_2
  • René Carmona; François Delarue Solving MFGs with a Common Noise, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 155 | DOI:10.1007/978-3-319-56436-4_3
  • René Carmona; François Delarue The Master Field and the Master Equation, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 239 | DOI:10.1007/978-3-319-56436-4_4
  • René Carmona; François Delarue Optimization in a Random Environment, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 3 | DOI:10.1007/978-3-319-56436-4_1
  • René Carmona; François Delarue Classical Solutions to the Master Equation, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 323 | DOI:10.1007/978-3-319-56436-4_5
  • René Carmona; François Delarue Convergence and Approximations, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 447 | DOI:10.1007/978-3-319-56436-4_6
  • René Carmona; François Delarue Extensions for Volume II, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 541 | DOI:10.1007/978-3-319-56436-4_7
  • Yurii Averboukh Viability Theorem for Deterministic Mean Field Type Control Systems, Set-Valued and Variational Analysis, Volume 26 (2018) no. 4, p. 993 | DOI:10.1007/s11228-018-0479-2
  • Yurii Averboukh, 2017 Constructive Nonsmooth Analysis and Related Topics (dedicated to the memory of V.F. Demyanov) (CNSA) (2017), p. 1 | DOI:10.1109/cnsa.2017.7973931
  • Josselin Garnier; George Papanicolaou; Tzu-Wei Yang A risk analysis for a system stabilized by a central agent, Risk and Decision Analysis, Volume 6 (2017) no. 2, p. 97 | DOI:10.3233/rda-160117
  • Huyên Pham; Xiaoli Wei Dynamic Programming for Optimal Control of Stochastic McKean–Vlasov Dynamics, SIAM Journal on Control and Optimization, Volume 55 (2017) no. 2, p. 1069 | DOI:10.1137/16m1071390
  • Daniel Lacker Limit Theory for Controlled McKean–Vlasov Dynamics, SIAM Journal on Control and Optimization, Volume 55 (2017) no. 3, p. 1641 | DOI:10.1137/16m1095895
  • Erhan Bayraktar; Andrea Cosso; Huyên Pham Randomized dynamic programming principle and Feynman-Kac representation for optimal control of McKean-Vlasov dynamics, Transactions of the American Mathematical Society, Volume 370 (2017) no. 3, p. 2115 | DOI:10.1090/tran/7118
  • P. Jameson Graber Linear Quadratic Mean Field Type Control and Mean Field Games with Common Noise, with Application to Production of an Exhaustible Resource, Applied Mathematics Optimization, Volume 74 (2016) no. 3, p. 459 | DOI:10.1007/s00245-016-9385-x
  • Mathieu Laurière; Olivier Pironneau Dynamic Programming for Mean-Field Type Control, Journal of Optimization Theory and Applications, Volume 169 (2016) no. 3, p. 902 | DOI:10.1007/s10957-015-0785-x
  • Alain Bensoussan; Jens Frehse; Sheung Chi Phillip Yam The Master equation in mean field theory, Journal de Mathématiques Pures et Appliquées, Volume 103 (2015) no. 6, p. 1441 | DOI:10.1016/j.matpur.2014.11.005

Cité par 45 documents. Sources : Crossref

Commentaires - Politique