We show that we can consider the ridgelet transform for Wiener functionals as a subexponential random variable. We give an application of this result to random walks.
La transformée en ridelettes peut être considérée comme une variable aléatoire sous-exponentielle. On donne alors une application de ce résultat aux marches aléatoires.
Accepted:
Published online:
Claude Martias 1
@article{CRMATH_2014__352_12_1029_0, author = {Claude Martias}, title = {On the subexponentiality of the ridgelet transform}, journal = {Comptes Rendus. Math\'ematique}, pages = {1029--1031}, publisher = {Elsevier}, volume = {352}, number = {12}, year = {2014}, doi = {10.1016/j.crma.2014.06.012}, language = {en}, }
Claude Martias. On the subexponentiality of the ridgelet transform. Comptes Rendus. Mathématique, Volume 352 (2014) no. 12, pp. 1029-1031. doi : 10.1016/j.crma.2014.06.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.06.012/
[1] Ruin Probabilities, World Scientific, 2000
[2] Étude de la transformée en ondelettes dans la compression d'images fixes, Courrier du Savoir, Volume 5 (June 2004), pp. 69-74
[3] Moments and tails in monotone–separable stochastic networks, Ann. Appl. Probab., Volume 14 (2004), pp. 612-650
[4] Asymptotics of a maximal dater in generalized Jackson networks, J. Appl. Probab., Volume 42 (2005), pp. 513-530
[5] Fourier and Wavelet Analysis, Springer-Verlag, New York, 2000
[6] Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1992
[7] Modelling Extremals Events for Insurance and Finance, Springer, Berlin, 1997
[8] An Introduction to Heavy-Tailed and Subexponential Distributions, Springer Series in Operations Research and Financial Engineering, Springer, New York/Dordrecht/Heidelberg/London, 2011
[9] La transformée en ridelettes pour les fonctionnelles de Wiener, C. R. Acad. Sci. Paris, Ser. I, Volume 350 (2012) no. 5–6, pp. 259-262
[10] The Wavelet transform for Wiener functionals and some applications, Stoch. Int. J. Probab. Stoch. Process., Volume 86 (2014) no. 5 | DOI
Cited by Sources:
Comments - Policy