We establish some characterizations of the standard imbeddings of hyperbolic spaces in the -dimensional Minkowski space with intrinsic and extrinsic properties such as the n-dimensional area of the sections cut off by hyperplanes, the -dimensional volume of regions between parallel hyperplanes, and the n-dimensional surface area of regions between parallel hyperplanes. In the same manner, we give an affirmatively partial answer to Question A suggested in [6], which is for the characterization of hyperspheres in the -dimensional Euclidean space .
Nous établissons quelques caractérisations des plongements standard d'espaces hyperboliques dans l'espace de Minkowski de dimension , avec des propriétés intrinsèques et extrinsèques comme la surface n-dimensionnelle des sections coupées par des hyperplans, le volume en dimensions de régions entre des hyperplans parallèles et la surface n-dimensionnelle de régions entre des hyperplans parallèles. De la même façon, nous donnons une réponse affirmative partielle à la question A suggérée dans [6], qui concerne la caractérisation d'hypersphères dans l'espace Euclidien de dimension .
Accepted:
Published online:
Dong-Soo Kim 1; Young Ho Kim 2; Dae Won Yoon 3
@article{CRMATH_2014__352_12_1033_0, author = {Dong-Soo Kim and Young Ho Kim and Dae Won Yoon}, title = {On standard imbeddings of hyperbolic spaces in the {Minkowski} space}, journal = {Comptes Rendus. Math\'ematique}, pages = {1033--1038}, publisher = {Elsevier}, volume = {352}, number = {12}, year = {2014}, doi = {10.1016/j.crma.2014.09.003}, language = {en}, }
TY - JOUR AU - Dong-Soo Kim AU - Young Ho Kim AU - Dae Won Yoon TI - On standard imbeddings of hyperbolic spaces in the Minkowski space JO - Comptes Rendus. Mathématique PY - 2014 SP - 1033 EP - 1038 VL - 352 IS - 12 PB - Elsevier DO - 10.1016/j.crma.2014.09.003 LA - en ID - CRMATH_2014__352_12_1033_0 ER -
Dong-Soo Kim; Young Ho Kim; Dae Won Yoon. On standard imbeddings of hyperbolic spaces in the Minkowski space. Comptes Rendus. Mathématique, Volume 352 (2014) no. 12, pp. 1033-1038. doi : 10.1016/j.crma.2014.09.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.09.003/
[1] Minimal Submanifolds in Pseudo-Riemannian Geometry, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, USA, 2011
[2] Complete constant Gaussian curvature surfaces in the Minkowski space and harmonic diffeomorphisms onto the hyperbolic plane, Tohoku Math. J., Volume 55 (2003) no. 4, pp. 467-476
[3] On complete hypersurfaces of nonnegative sectional curvatures and constant mth mean curvature, Trans. Amer. Math. Soc., Volume 245 (1978), pp. 363-374
[4] On isometric immersions of the hyperbolic plane into the Lorentz–Minkowski space and the Monge–Ampère equation of a certain type, Math. Ann., Volume 262 (1983) no. 2, pp. 245-253
[5] Some characterizations of spheres and elliptic paraboloids, Linear Algebra Appl., Volume 437 (2012) no. 1, pp. 113-120
[6] Some characterizations of spheres and elliptic paraboloids II, Linear Algebra Appl., Volume 438 (2013) no. 3, pp. 1356-1364
[7] Spacelike hypersurfaces with constant Gauss–Kronecker curvature in the Minkowski space, Arch. Math. (Basel), Volume 64 (1995) no. 6, pp. 534-551
[8] Élie Cartan's work on isoparametric families of hypersurfaces, Part 1, Stanford Univ., Stanford, Calif., 1973 (Proc. Symp. Pure Math.), Volume vol. XXVII, Amer. Math. Soc., Providence, RI, USA (1975), pp. 191-200
[9] On isoparametric hypersurfaces in the Lorentzian space forms, Jpn. J. Math., Volume 7 (1981) no. 1, pp. 217-226
[10] Semi-Riemannian Geometry. With Applications to Relativity, Pure Appl. Math., vol. 103, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983
Cited by Sources:
Comments - Policy