[Sur les connexions métriques anti-hermitiennes]
C'est un fait remarquable que les métriques anti-kählériennes et leurs métriques jumelles possèdent la même connexion de Levi–Civita. De telles connexions métriques sans torsion mettent aussi en relief l'importance des connexions métriques anti-hermitiennes avec torsion dans l'étude de la géométrie anti-hermitienne. Dans le but de définir de nouveaux types de connexions métriques anti-hermitiennes, nous considérons dans la présente note des classes de variétés anti-hermitiennes associées à ces connexions.
It is a remarkable fact that anti-Kähler and its twin metrics share the same Levi–Civita connection. Such torsion-free metric connection also emphasizes the importance of anti-Hermitian metric connections with torsion in the study of anti-Hermitian geometry. With the objective of defining new types of anti-Hermitian metric connections, in the present paper we consider classes of anti-Hermitian manifolds associated with these connections.
Accepté le :
Publié le :
Arif Salimov 1
@article{CRMATH_2014__352_9_731_0, author = {Arif Salimov}, title = {On {anti-Hermitian} metric connections}, journal = {Comptes Rendus. Math\'ematique}, pages = {731--735}, publisher = {Elsevier}, volume = {352}, number = {9}, year = {2014}, doi = {10.1016/j.crma.2014.07.004}, language = {en}, }
Arif Salimov. On anti-Hermitian metric connections. Comptes Rendus. Mathématique, Volume 352 (2014) no. 9, pp. 731-735. doi : 10.1016/j.crma.2014.07.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.07.004/
[1] A local index theorem for non-Kähler manifolds, Math. Ann., Volume 284 (1989) no. 4, pp. 681-699
[2] On Kähler–Norden manifolds, Proc. Indian Acad. Sci. Math. Sci., Volume 119 (2009) no. 1, pp. 71-80
[3] On Lie groups as quasi-Kähler manifolds with Killing Norden metric, Adv. Geom., Volume 8 (2008) no. 3, pp. 343-352
[4] On operators associated with tensor fields, J. Geom., Volume 99 (2010) no. 1–2, pp. 107-145
[5] Curvature properties of anti-Kähler–Codazzi manifolds, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013) no. 5–6, pp. 225-227
[6] Analytic tensor and its generalization, Tohoku Math. J., Volume 12 (1960) no. 2, pp. 208-221
Cité par Sources :
☆ The author is grateful to the referee for careful reading and useful comments. This paper is supported by The Scientific and Technological Research Council of Turkey (TUBITAK, Project Number: 112T111).
Commentaires - Politique