Comptes Rendus
Number theory/Algebraic geometry
The Arithmetic Site
Comptes Rendus. Mathématique, Volume 352 (2014) no. 12, pp. 971-975.

We show that the non-commutative geometric approach to the Riemann zeta function has an algebraic geometric incarnation: the “Arithmetic Site”. This site involves the tropical semiring N¯ viewed as a sheaf on the topos N׈ dual to the multiplicative semigroup of positive integers. We realize the Frobenius correspondences in the square of the “Arithmetic Site”.

Le « Site arithmétique » est l'incarnation en géométrie algébrique de l'espace non commutatif, de nature adélique, qui permet d'obtenir la fonction zêta de Riemann comme fonction de dénombrement de Hasse–Weil. Ce site est construit à partir du semi-anneau tropical N¯ vu comme un faisceau sur le topos N׈ dual du semigroupe multiplicatif des entiers positifs. Nous réalisons les correspondances de Frobenius dans le carré du « Site arithmétique ».

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.07.009

Alain Connes 1, 2, 3; Caterina Consani 4

1 Collège de France, 3, rue d'Ulm, 75005 Paris, France
2 I.H.E.S., France
3 Ohio State University, USA
4 The Johns Hopkins University, Baltimore, MD 21218, USA
@article{CRMATH_2014__352_12_971_0,
     author = {Alain Connes and Caterina Consani},
     title = {The {Arithmetic} {Site}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {971--975},
     publisher = {Elsevier},
     volume = {352},
     number = {12},
     year = {2014},
     doi = {10.1016/j.crma.2014.07.009},
     language = {en},
}
TY  - JOUR
AU  - Alain Connes
AU  - Caterina Consani
TI  - The Arithmetic Site
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 971
EP  - 975
VL  - 352
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crma.2014.07.009
LA  - en
ID  - CRMATH_2014__352_12_971_0
ER  - 
%0 Journal Article
%A Alain Connes
%A Caterina Consani
%T The Arithmetic Site
%J Comptes Rendus. Mathématique
%D 2014
%P 971-975
%V 352
%N 12
%I Elsevier
%R 10.1016/j.crma.2014.07.009
%G en
%F CRMATH_2014__352_12_971_0
Alain Connes; Caterina Consani. The Arithmetic Site. Comptes Rendus. Mathématique, Volume 352 (2014) no. 12, pp. 971-975. doi : 10.1016/j.crma.2014.07.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.07.009/

[1] SGA4, LNM, vols. 269, 270, 305 (M. Artin; A. Grothendieck; J.-L. Verdier, eds.), Springer-Verlag, Berlin, New York, 1972

[2] D. Castella Algèbres de polynômes tropicaux, Ann. Math. Blaise Pascal, Volume 20 (2013), pp. 301-330

[3] A. Connes Trace formula in noncommutative geometry and the zeros of the Riemann zeta function, Sel. Math. New Ser., Volume 5 (1999) no. 1, pp. 29-106

[4] A. Connes; M. Marcolli Noncommutative Geometry, Quantum Fields, and Motives, Colloquium Publications, vol. 55, American Mathematical Society, 2008

[5] A. Connes; C. Consani Schemes over F1 and zeta functions, Compos. Math., Volume 146 (2010) no. 6, pp. 1383-1415

[6] A. Connes; C. Consani From monoïds to hyperstructures: in search of an absolute arithmetic, Casimir Force, Casimir Operators and the Riemann Hypothesis, de Gruyter, 2010, pp. 147-198

[7] A. Grothendieck Sur une note de Mattuck–Tate, J. Reine Angew. Math., Volume 200 (1958), pp. 208-215

[8] S. Mac Lane; I. Moerdijk Sheaves in Geometry and Logic. A First Introduction to Topos Theory, Universitext, Springer-Verlag, New York, 1994 (corrected reprint of the 1992 edition)

[9] R. Meyer On a representation of the idèle class group related to primes and zeros of L-functions, Duke Math. J., Volume 127 (2005) no. 3, pp. 519-595

[10] B. Pareigis; H. Rohrl Remarks on semimodules, 2013 | arXiv

[11] C. Soulé Les variétés sur le corps à un élément, Mosc. Math. J., Volume 4 (2004) no. 1, pp. 217-244

Cited by Sources:

Both authors thank Ohio State University where this paper was written.

Comments - Policy