The main object of this paper is to give an application of the r-Whitney numbers to the values at rational arguments of the high-order Bernoulli and Euler polynomials. The obtained formulas generalize the known formulas of the Bernoulli numbers of both kinds.
Le but de ce papier est de présenter une application des nombres r-Whitney aux valeurs des polynômes de Bernoulli et d'Euler aux points rationnels. Les résultats obtenus généralisent les formules connues des nombres de Bernoulli des deux espèces.
Accepted:
Published online:
Miloud Mihoubi 1; Meriem Tiachachat 1
@article{CRMATH_2014__352_12_965_0, author = {Miloud Mihoubi and Meriem Tiachachat}, title = {Some applications of the {\protect\emph{r}-Whitney} numbers}, journal = {Comptes Rendus. Math\'ematique}, pages = {965--969}, publisher = {Elsevier}, volume = {352}, number = {12}, year = {2014}, doi = {10.1016/j.crma.2014.08.001}, language = {en}, }
Miloud Mihoubi; Meriem Tiachachat. Some applications of the r-Whitney numbers. Comptes Rendus. Mathématique, Volume 352 (2014) no. 12, pp. 965-969. doi : 10.1016/j.crma.2014.08.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.08.001/
[1] Translated Whitney and r-Whitney numbers: a combinatorial approach, J. Integer Seq., Volume 16 (2013) no. 8 (article 13.8.6)
[2] On Whitney numbers of Dowling lattices, Discrete Math., Volume 159 (1996), pp. 13-33
[3] The r-Stirling numbers, Discrete Math., Volume 49 (1984), pp. 241-259
[4] The r-Whitney numbers of Dowling lattices, Discrete Math., Volume 312 (2012) no. 15, pp. 2337-2348
[5] A class of gemometric lattices bases on finite groups, J. Comb. Theory, Ser. B, Volume 14 (1973), pp. 61-86
[6]
, Addison-Wesley Publishing Company, Reading, MA (1994), p. 1[7] The Special Functions and Their Approximations, vol. I, Academic Press, New York, London, 1969
[8] A note on the r-Whitney numbers of Dowling lattices, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013), pp. 649-655
[9] A new formula for the Bernoulli polynomials, Results Math., Volume 58 (2010), pp. 329-335
[10] The values of the high order Bernoulli polynomials at integers and the r-Stirling numbers, 23 Jan. 2014 | arXiv
[11] An asymptotic expansion for the Bernoulli numbers of the second kind, J. Integer Seq., Volume 14 (2011) (article 11.4.8)
[12] Bernoulli polynomials of the second kind and general order, Indian J. Pure Appl. Math., Volume 11 (1980), pp. 1361-1368
[13] Some results on Whitney numbers of Dowling lattices, Arab J. Math. Sci., Volume 20 (2014) no. 1, pp. 11-27
[14] The Umbral Calculus, Academic Press, 1984
[15] An explicit formula for the generalized Bernoulli polynomials, J. Math. Anal. Appl., Volume 130 (1988), pp. 509-513
Cited by Sources:
Comments - Policy