In this note we explain an analogy of moduli of canonically polarized varieties and of Calabi–Yau manifolds, when these are equipped with Kähler–Einstein forms. Given a holomorphic family of canonically polarized varieties, the direct image sheaves carry induced Hermitian metrics, whose curvatures enjoy similar properties. Due to the absence of a Torelli theorem, we construct a Finsler metric in the orbifold sense in order to conclude about the hyperbolicity of the moduli stack.
Dans cette note, nous expliquons une analogie entre les espaces de modules des variétés canoniquement polarisées et ceux des variétés de Calabi–Yau, lorsque celles-ci sont équipées de métriques de Kähler–Einstein. Étant donné une famille de variétés canoniquement polarisées, les faisceaux images directes possèdent des métriques hermitiennes induites, dont les tenseurs de courbure jouissent de propriétés analogues. En raison de l'absence de théorème de type Torelli, nous construisons une métrique de Finsler au sens orbifold afin de pouvoir conclure à l'hyperbolicité du champ de modules.
Accepted:
Published online:
Georg Schumacher 1
@article{CRMATH_2014__352_10_835_0, author = {Georg Schumacher}, title = {Curvature properties for moduli of canonically polarized {manifolds{\textemdash}An} analogy to moduli of {Calabi{\textendash}Yau} manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {835--840}, publisher = {Elsevier}, volume = {352}, number = {10}, year = {2014}, doi = {10.1016/j.crma.2014.08.008}, language = {en}, }
TY - JOUR AU - Georg Schumacher TI - Curvature properties for moduli of canonically polarized manifolds—An analogy to moduli of Calabi–Yau manifolds JO - Comptes Rendus. Mathématique PY - 2014 SP - 835 EP - 840 VL - 352 IS - 10 PB - Elsevier DO - 10.1016/j.crma.2014.08.008 LA - en ID - CRMATH_2014__352_10_835_0 ER -
Georg Schumacher. Curvature properties for moduli of canonically polarized manifolds—An analogy to moduli of Calabi–Yau manifolds. Comptes Rendus. Mathématique, Volume 352 (2014) no. 10, pp. 835-840. doi : 10.1016/j.crma.2014.08.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.08.008/
[1] Some remarks on Teichmüller's space of Riemann surfaces, Ann. Math. (2), Volume 74 (1961), pp. 171-191
[2] Curvature properties of Teichmüller's space, J. Anal. Math., Volume 9 (1961), pp. 161-176
[3] Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials, 1995 (Lecture notes, Santa Cruz published online)
[4] Periods of integrals on algebraic manifolds. III: Some global differential-geometric properties of the period mapping, Publ. Math. Inst. Hautes Études Sci., Volume 38 (1970), pp. 125-180
[5] Good geometry on the curve moduli, Publ. Res. Inst. Math. Sci., Kyoto Univ., Volume 42 (2008), pp. 600-724
[6] Harmonic maps of the moduli space of compact Riemann surfaces, Math. Ann., Volume 275 (1986), pp. 455-466
[7] The curvature of the Petersson–Weil metric on the moduli space of Kähler–Einstein manifolds (V. Ancona et al., eds.), Complex Analysis and Geometry, University Series in Mathematics, Plenum Press, New York, 1993, pp. 339-354
[8] Asymptotics of Kähler–Einstein metrics on quasi-projective manifolds and an extension theorem on holomorphic maps, Math. Ann., Volume 311 (1998), pp. 631-645
[9] Positivity of relative canonical bundles and applications, Invent. Math., Volume 190 (2012), pp. 1-56
[10] Positivity of relative canonical bundles for families of canonically polarized manifolds | arXiv
[11] Curvature of higher direct images and applications | arXiv
[12] Curvature of the Weil–Petersson metric in the moduli space of compact Kähler–Einstein manifolds of negative first Chern class, Aspects Math. E, Volume 9 (1986), pp. 261-298
[13] Finsler Metrics and Kobayashi hyperbolicity of the moduli spaces of canonically polarized manifolds, Ann. Math. (2014) (in press)
[14] On the Brody hyperbolicity of moduli spaces for canonically polarized manifolds, Duke Math. J., Volume 118 (2003), pp. 103-150
[15] Théorie de Hodge et géométrie algébrique complexe, Société mathématique de France, Paris, 2002 (Cours spécialisés)
[16] Œuvres scientifiques: Collected Papers, vol. II (1951–1964), Springer-Verlag, New York–Heidelberg–Berlin, 1980 (XII, 1958c, final report)
[17] Chern forms and the Riemann tensor for the moduli space of curves, Invent. Math., Volume 85 (1986), pp. 119-145
Cited by Sources:
Comments - Policy