Comptes Rendus
Geometry
Polyhedral metrics on the boundaries of convex compact quasi-Fuchsian manifolds
Comptes Rendus. Mathématique, Volume 352 (2014) no. 10, pp. 831-834.

We show the existence of a convex compact subset in a quasi-Fuchsian manifold such that the induced metric on the boundary of the subset coincides with a prescribed hyperbolic polyhedral metric.

On demontre l'existence d'un sous-ensemble convexe compact dans une variété quasi-fuchsienne tel que la métrique induite de bord du sous-ensemble soit une métrique polyèdrale hyperbolique prescrite.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.09.001

Dmitriy Slutskiy 1

1 Institut de recherche mathématique avancée (IRMA), Université de Strasbourg, 7 rue René-Descartes, 67084 Strasbourg, France
@article{CRMATH_2014__352_10_831_0,
     author = {Dmitriy Slutskiy},
     title = {Polyhedral metrics on the boundaries of convex compact {quasi-Fuchsian} manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {831--834},
     publisher = {Elsevier},
     volume = {352},
     number = {10},
     year = {2014},
     doi = {10.1016/j.crma.2014.09.001},
     language = {en},
}
TY  - JOUR
AU  - Dmitriy Slutskiy
TI  - Polyhedral metrics on the boundaries of convex compact quasi-Fuchsian manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 831
EP  - 834
VL  - 352
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crma.2014.09.001
LA  - en
ID  - CRMATH_2014__352_10_831_0
ER  - 
%0 Journal Article
%A Dmitriy Slutskiy
%T Polyhedral metrics on the boundaries of convex compact quasi-Fuchsian manifolds
%J Comptes Rendus. Mathématique
%D 2014
%P 831-834
%V 352
%N 10
%I Elsevier
%R 10.1016/j.crma.2014.09.001
%G en
%F CRMATH_2014__352_10_831_0
Dmitriy Slutskiy. Polyhedral metrics on the boundaries of convex compact quasi-Fuchsian manifolds. Comptes Rendus. Mathématique, Volume 352 (2014) no. 10, pp. 831-834. doi : 10.1016/j.crma.2014.09.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.09.001/

[1] A.D. Alexandroff Complete convex surfaces in Lobachevskian space, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 9 (1945), pp. 113-120

[2] A.D. Alexandrov Intrinsic Geometry of Convex Surfaces, Selected Works: Part II, Chapman and Hall/CRC, Berlin, 2006

[3] R.D. Canary; D.B.A. Epstein; P.L. Green Notes on notes of Thurston, Fundamentals of Hyperbolic Geometry: Selected Expositions, London Math. Soc. Lecture Note Ser., vol. 328, 2006, pp. 1-115

[4] F. Labourie Métriques prescrites sur le bord des variétés hyperboliques de dimension 3, J. Differ. Geom., Volume 35 (1992), pp. 609-626

[5] J.-P. Otal Les géodésiques fermées d'une variété hyperbolique en tant que nœuds, Warwick, 2001 (London Math. Soc. Lecture Note Ser.), Volume vol. 299 (2003), pp. 95-104

[6] J.-M. Schlenker Hyperbolic manifolds with convex boundary, Invent. Math., Volume 163 (2006), pp. 109-169

[7] D. Slutskiy Métriques polyédrales sur les bords de variétés hyperboliques convexes et flexibilité des polyèdres hyperboliques, Université Paul-Sabatier, Toulouse, France, 2013 (PhD thesis)

Cited by Sources:

Comments - Policy