Comptes Rendus
Number theory/Geometry
A volume estimate for the set of stable lattices
Comptes Rendus. Mathématique, Volume 352 (2014) no. 11, pp. 875-879.

We show that in high dimensions the set of stable lattices is almost of full measure in the space of unimodular lattices.

Nous montrons qu'en grande dimension, l'ensemble des réseaux stables est de mesure presque pleine dans l'espace des réseaux unimodulaires.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.08.019

Uri Shapira 1; Barak Weiss 2

1 Dept. of Mathematics, Technion, Haifa, Israel
2 Dept. of Mathematics, Tel Aviv University, Tel Aviv, Israel
@article{CRMATH_2014__352_11_875_0,
     author = {Uri Shapira and Barak Weiss},
     title = {A volume estimate for the set of stable lattices},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {875--879},
     publisher = {Elsevier},
     volume = {352},
     number = {11},
     year = {2014},
     doi = {10.1016/j.crma.2014.08.019},
     language = {en},
}
TY  - JOUR
AU  - Uri Shapira
AU  - Barak Weiss
TI  - A volume estimate for the set of stable lattices
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 875
EP  - 879
VL  - 352
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2014.08.019
LA  - en
ID  - CRMATH_2014__352_11_875_0
ER  - 
%0 Journal Article
%A Uri Shapira
%A Barak Weiss
%T A volume estimate for the set of stable lattices
%J Comptes Rendus. Mathématique
%D 2014
%P 875-879
%V 352
%N 11
%I Elsevier
%R 10.1016/j.crma.2014.08.019
%G en
%F CRMATH_2014__352_11_875_0
Uri Shapira; Barak Weiss. A volume estimate for the set of stable lattices. Comptes Rendus. Mathématique, Volume 352 (2014) no. 11, pp. 875-879. doi : 10.1016/j.crma.2014.08.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.08.019/

[1] U. Shapira, B. Weiss, Stable lattices and the diagonal group, J. Eur. Math. Soc., submitted for publication.

[2] C.L. Siegel A mean value theorem in geometry of numbers, Ann. Math. (2), Volume 46 (1945), pp. 340-347 MR0012093 (6,257b)

[3] A. Södergren On the distribution of angles between the N shortest vectors in a random lattice, J. Lond. Math. Soc. (2), Volume 84 (2011) no. 3, pp. 749-764 (MR2855800) | DOI

[4] A. Strömbergsson On the limit distribution of Frobenius numbers, Acta Arith., Volume 152 (2012) no. 1, pp. 81-107 (MR2869212) | DOI

[5] J.L. Thunder Higher-dimensional analogs of Hermite's constant, Mich. Math. J., Volume 45 (1998) no. 2, pp. 301-314

[6] A. Weil Adeles and algebraic groups, Prog. Math., vol. 23, Birkhäuser, Boston, Maas., 1982 With appendices by M. Demazure and Takashi Ono. MR670072 (83m:10032)

Cited by Sources:

Comments - Policy