We show that in high dimensions the set of stable lattices is almost of full measure in the space of unimodular lattices.
Nous montrons qu'en grande dimension, l'ensemble des réseaux stables est de mesure presque pleine dans l'espace des réseaux unimodulaires.
Accepted:
Published online:
Uri Shapira 1; Barak Weiss 2
@article{CRMATH_2014__352_11_875_0, author = {Uri Shapira and Barak Weiss}, title = {A volume estimate for the set of stable lattices}, journal = {Comptes Rendus. Math\'ematique}, pages = {875--879}, publisher = {Elsevier}, volume = {352}, number = {11}, year = {2014}, doi = {10.1016/j.crma.2014.08.019}, language = {en}, }
Uri Shapira; Barak Weiss. A volume estimate for the set of stable lattices. Comptes Rendus. Mathématique, Volume 352 (2014) no. 11, pp. 875-879. doi : 10.1016/j.crma.2014.08.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.08.019/
[1] U. Shapira, B. Weiss, Stable lattices and the diagonal group, J. Eur. Math. Soc., submitted for publication.
[2] A mean value theorem in geometry of numbers, Ann. Math. (2), Volume 46 (1945), pp. 340-347 MR0012093 (6,257b)
[3] On the distribution of angles between the N shortest vectors in a random lattice, J. Lond. Math. Soc. (2), Volume 84 (2011) no. 3, pp. 749-764 (MR2855800) | DOI
[4] On the limit distribution of Frobenius numbers, Acta Arith., Volume 152 (2012) no. 1, pp. 81-107 (MR2869212) | DOI
[5] Higher-dimensional analogs of Hermite's constant, Mich. Math. J., Volume 45 (1998) no. 2, pp. 301-314
[6] Adeles and algebraic groups, Prog. Math., vol. 23, Birkhäuser, Boston, Maas., 1982 With appendices by M. Demazure and Takashi Ono. MR670072 (83m:10032)
Cited by Sources:
Comments - Policy