Comptes Rendus
Number theory/Algebraic geometry
The first cohomology of separably rationally connected varieties
Comptes Rendus. Mathématique, Volume 352 (2014) no. 11, pp. 871-873.

We present two proofs that for a smooth projective separably rationally connected variety over an algebraically closed field H1(X,OX)=0. The second, cohomological proof generalises to varieties admitting a free curve of higher genus.

Nous présentons deux démonstrations de la nullité de H1(X,OX) pour les variétés projectives, lisses, séparablement rationnellement connexes, sur un corps algébriquement clos. La seconde, cohomologique, se généralise aux variétés ayant une courbe libre de genre supérieur.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.09.013

Frank Gounelas 1

1 Institut für Mathematik, Humboldt Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
@article{CRMATH_2014__352_11_871_0,
     author = {Frank Gounelas},
     title = {The first cohomology of separably rationally connected varieties},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {871--873},
     publisher = {Elsevier},
     volume = {352},
     number = {11},
     year = {2014},
     doi = {10.1016/j.crma.2014.09.013},
     language = {en},
}
TY  - JOUR
AU  - Frank Gounelas
TI  - The first cohomology of separably rationally connected varieties
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 871
EP  - 873
VL  - 352
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2014.09.013
LA  - en
ID  - CRMATH_2014__352_11_871_0
ER  - 
%0 Journal Article
%A Frank Gounelas
%T The first cohomology of separably rationally connected varieties
%J Comptes Rendus. Mathématique
%D 2014
%P 871-873
%V 352
%N 11
%I Elsevier
%R 10.1016/j.crma.2014.09.013
%G en
%F CRMATH_2014__352_11_871_0
Frank Gounelas. The first cohomology of separably rationally connected varieties. Comptes Rendus. Mathématique, Volume 352 (2014) no. 11, pp. 871-873. doi : 10.1016/j.crma.2014.09.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.09.013/

[1] I. Biswas, J.P.P. dos Santos, Triviality criteria for vector bundles over rationally connected varieties, Preprint, 2011.

[2] Feodor A. Bogomolov, Michael L. MacQuillan, Rational curves on foliated varieties, IHES, Preprint, 2001.

[3] A. Chambert-Loir Points rationnels et groupes fondamentaux: applications de la cohomologie p-adique, Astérisque, Volume 294 (2004), pp. 125-146 (d'après P. Berthelot, T. Ekedahl, H. Esnault, etc.)

[4] R.M. Crew Étale p-covers in characteristic p, Compos. Math., Volume 52 (1984) no. 1, pp. 31-45

[5] O. Debarre Variétés rationnellement connexes, Séminaire Bourbaki, vols. 2001/2002 (Astérisque), Volume 290 (2003) no. 2003, pp. 243-266 (d'après T. Graber, J. Harris, J. Starr et A.J. de Jong)

[6] F. Gounelas Free curves on varieties, 2012 (Preprint) | arXiv

[7] S. Kebekus; L. Solá Conde; M. Toma Rationally connected foliations after Bogomolov and McQuillan, J. Algebr. Geom., Volume 16 (2007) no. 1, pp. 65-81

[8] J. Kollár Nonrational hypersurfaces, J. Amer. Math. Soc., Volume 8 (1995) no. 1, pp. 241-249

[9] J. Kollár Rational Curves on Algebraic Varieties, Ergeb. Math. Ihrer Grenzgeb. 3. Folge, A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996

[10] J. Kollár Singularities of the Minimal Model Program, Cambridge Tracts in Mathematics, vol. 200, Cambridge University Press, Cambridge, UK, 2013 (with a collaboration of Sándor Kovács)

[11] N. Nygaard On the fundamental group of a unirational 3-fold, Invent. Math., Volume 44 (1978) no. 1, pp. 75-86

[12] N.I. Shepherd-Barron Fano threefolds in positive characteristic, Compos. Math., Volume 105 (1997) no. 3, pp. 237-265

[13] Noriyuki Suwa A note on the fundamental group of a unirational variety, Proc. Jpn. Acad., Ser. A, Math. Sci., Volume 59 (1983) no. 3, pp. 98-99

[14] Yi Zhu, Fano hypersurfaces in positive characteristic, Preprint, 2011.

Cited by Sources:

Comments - Policy