We present two proofs that for a smooth projective separably rationally connected variety over an algebraically closed field . The second, cohomological proof generalises to varieties admitting a free curve of higher genus.
Nous présentons deux démonstrations de la nullité de pour les variétés projectives, lisses, séparablement rationnellement connexes, sur un corps algébriquement clos. La seconde, cohomologique, se généralise aux variétés ayant une courbe libre de genre supérieur.
Accepted:
Published online:
Frank Gounelas 1
@article{CRMATH_2014__352_11_871_0, author = {Frank Gounelas}, title = {The first cohomology of separably rationally connected varieties}, journal = {Comptes Rendus. Math\'ematique}, pages = {871--873}, publisher = {Elsevier}, volume = {352}, number = {11}, year = {2014}, doi = {10.1016/j.crma.2014.09.013}, language = {en}, }
Frank Gounelas. The first cohomology of separably rationally connected varieties. Comptes Rendus. Mathématique, Volume 352 (2014) no. 11, pp. 871-873. doi : 10.1016/j.crma.2014.09.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.09.013/
[1] I. Biswas, J.P.P. dos Santos, Triviality criteria for vector bundles over rationally connected varieties, Preprint, 2011.
[2] Feodor A. Bogomolov, Michael L. MacQuillan, Rational curves on foliated varieties, IHES, Preprint, 2001.
[3] Points rationnels et groupes fondamentaux: applications de la cohomologie p-adique, Astérisque, Volume 294 (2004), pp. 125-146 (d'après P. Berthelot, T. Ekedahl, H. Esnault, etc.)
[4] Étale p-covers in characteristic p, Compos. Math., Volume 52 (1984) no. 1, pp. 31-45
[5] Variétés rationnellement connexes, Séminaire Bourbaki, vols. 2001/2002 (Astérisque), Volume 290 (2003) no. 2003, pp. 243-266 (d'après T. Graber, J. Harris, J. Starr et A.J. de Jong)
[6] Free curves on varieties, 2012 (Preprint) | arXiv
[7] Rationally connected foliations after Bogomolov and McQuillan, J. Algebr. Geom., Volume 16 (2007) no. 1, pp. 65-81
[8] Nonrational hypersurfaces, J. Amer. Math. Soc., Volume 8 (1995) no. 1, pp. 241-249
[9] Rational Curves on Algebraic Varieties, Ergeb. Math. Ihrer Grenzgeb. 3. Folge, A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996
[10] Singularities of the Minimal Model Program, Cambridge Tracts in Mathematics, vol. 200, Cambridge University Press, Cambridge, UK, 2013 (with a collaboration of Sándor Kovács)
[11] On the fundamental group of a unirational 3-fold, Invent. Math., Volume 44 (1978) no. 1, pp. 75-86
[12] Fano threefolds in positive characteristic, Compos. Math., Volume 105 (1997) no. 3, pp. 237-265
[13] A note on the fundamental group of a unirational variety, Proc. Jpn. Acad., Ser. A, Math. Sci., Volume 59 (1983) no. 3, pp. 98-99
[14] Yi Zhu, Fano hypersurfaces in positive characteristic, Preprint, 2011.
Cited by Sources:
Comments - Policy