We consider the mixing behavior of the solutions to the continuity equation associated with a divergence-free velocity field. In this Note, we sketch two explicit examples of exponential decay of the mixing scale of the solution, in case of Sobolev velocity fields, thus showing the optimality of known lower bounds. We also describe how to use such examples to construct solutions to the continuity equation with Sobolev but non-Lipschitz velocity field exhibiting instantaneous loss of any fractional Sobolev regularity.
Nous étudions le comportement de mélange de solutions de l'équation de continuité associée à un champ de vitesse à divergence nulle. Dans cette note, nous décrivons deux exemples explicites de décroissance exponentielle de l'échelle de mélange de la solution. Dans le cas des champs de vitesse Sobolev, nous montrons donc l'optimalité des estimations par dessous connues. Nous décrivons aussi comment utiliser de tels exemples pour construire des solutions de l'équation de continuité à champs de vitesse Sobolev mais non lipschitziens : ces solutions perdent immédiatement toute régularité Sobolev fractionnaire.
Accepted:
Published online:
Giovanni Alberti 1; Gianluca Crippa 2; Anna L. Mazzucato 3
@article{CRMATH_2014__352_11_901_0, author = {Giovanni Alberti and Gianluca Crippa and Anna L. Mazzucato}, title = {Exponential self-similar mixing and loss of regularity for continuity equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {901--906}, publisher = {Elsevier}, volume = {352}, number = {11}, year = {2014}, doi = {10.1016/j.crma.2014.08.021}, language = {en}, }
TY - JOUR AU - Giovanni Alberti AU - Gianluca Crippa AU - Anna L. Mazzucato TI - Exponential self-similar mixing and loss of regularity for continuity equations JO - Comptes Rendus. Mathématique PY - 2014 SP - 901 EP - 906 VL - 352 IS - 11 PB - Elsevier DO - 10.1016/j.crma.2014.08.021 LA - en ID - CRMATH_2014__352_11_901_0 ER -
%0 Journal Article %A Giovanni Alberti %A Gianluca Crippa %A Anna L. Mazzucato %T Exponential self-similar mixing and loss of regularity for continuity equations %J Comptes Rendus. Mathématique %D 2014 %P 901-906 %V 352 %N 11 %I Elsevier %R 10.1016/j.crma.2014.08.021 %G en %F CRMATH_2014__352_11_901_0
Giovanni Alberti; Gianluca Crippa; Anna L. Mazzucato. Exponential self-similar mixing and loss of regularity for continuity equations. Comptes Rendus. Mathématique, Volume 352 (2014) no. 11, pp. 901-906. doi : 10.1016/j.crma.2014.08.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.08.021/
[1] Structure of level sets and Sard-type properties of Lipschitz maps, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 12 (2013) no. 4, pp. 863-902
[2] A uniqueness result for the continuity equation in two dimensions, J. Eur. Math. Soc., Volume 16 (2014) no. 2, pp. 201-234
[3] Transport equation and Cauchy problem for BV vector fields, Invent. Math., Volume 158 (2004) no. 2, pp. 227-260
[4] Lagrangian flows for vector fields with gradient given by a singular integral, J. Hyperbolic Differ. Equ., Volume 10 (2013) no. 2, pp. 235-282
[5] A lemma and a conjecture on the cost of rearrangements, Rend. Semin. Mat. Univ. Padova, Volume 110 (2003), pp. 97-102
[6] Estimates and regularity results for the DiPerna–Lions flow, J. Reine Angew. Math., Volume 616 (2008), pp. 15-46
[7] Non unicité des solutions bornées pour un champ de vecteurs BV en dehors d'un hyperplan, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003) no. 4, pp. 249-252
[8] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511-547
[9] Lower bounds on the mix norm of passive scalars advected by incompressible enstrophy-constrained flows, Nonlinearity, Volume 27 (2014) no. 5, pp. 973-985
[10] Optimal stirring strategies for passive scalar mixing, J. Fluid Mech., Volume 675 (2011), pp. 465-476
[11] Optimal mixing and optimal stirring for fixed energy, fixed power, or fixed palenstrophy flows, J. Math. Phys., Volume 53 (2012) no. 11, p. 115611 (15)
[12] A multiscale measure for mixing, Physica D, Volume 211 (2005) no. 1–2, pp. 23-46
[13] Maximal mixing by incompressible fluid flows, Nonlinearity, Volume 26 (2013) no. 12, pp. 3279-3289
[14] Mixing and un-mixing by incompressible flows, 2014 | arXiv
Cited by Sources:
Comments - Policy