Comptes Rendus
Complex analysis
On the class of bi-univalent functions
Comptes Rendus. Mathématique, Volume 352 (2014) no. 11, pp. 895-900.

In an attempt to answer the question raised by A.W. Goodman, we obtain a covering theorem, a distortion theorem, a growth theorem, the radius of convexity and an argument estimate of f(z) for functions of the class σ of bi-univalent functions.

Dans une tentative de répondre à une question posée par A.W. Goodman, nous obtenons des théorèmes de surjectivité, de déformation et de croissance, ainsi qu'une estimation du rayon de convexité et de l'argument de f(z) pour une fonction f dans la classe σ des fonctions bi-univalentes.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.09.015

Srikandan Sivasubramanian 1; Radhakrishnan Sivakumar 1; Teodor Bulboacă 2; Tirunelveli Nellaiappar Shanmugam 3

1 Department of Mathematics, University College of Engineering Tindivanam, Anna University, Chennai, Tindivanam, 604 001, India
2 Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
3 Department of Mathematics, University College of Engineering, Kanchipuram, Anna University, Chennai, Kanchipuram, 631 552, India
@article{CRMATH_2014__352_11_895_0,
     author = {Srikandan Sivasubramanian and Radhakrishnan Sivakumar and Teodor Bulboac\u{a} and Tirunelveli Nellaiappar Shanmugam},
     title = {On the class of bi-univalent functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {895--900},
     publisher = {Elsevier},
     volume = {352},
     number = {11},
     year = {2014},
     doi = {10.1016/j.crma.2014.09.015},
     language = {en},
}
TY  - JOUR
AU  - Srikandan Sivasubramanian
AU  - Radhakrishnan Sivakumar
AU  - Teodor Bulboacă
AU  - Tirunelveli Nellaiappar Shanmugam
TI  - On the class of bi-univalent functions
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 895
EP  - 900
VL  - 352
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2014.09.015
LA  - en
ID  - CRMATH_2014__352_11_895_0
ER  - 
%0 Journal Article
%A Srikandan Sivasubramanian
%A Radhakrishnan Sivakumar
%A Teodor Bulboacă
%A Tirunelveli Nellaiappar Shanmugam
%T On the class of bi-univalent functions
%J Comptes Rendus. Mathématique
%D 2014
%P 895-900
%V 352
%N 11
%I Elsevier
%R 10.1016/j.crma.2014.09.015
%G en
%F CRMATH_2014__352_11_895_0
Srikandan Sivasubramanian; Radhakrishnan Sivakumar; Teodor Bulboacă; Tirunelveli Nellaiappar Shanmugam. On the class of bi-univalent functions. Comptes Rendus. Mathématique, Volume 352 (2014) no. 11, pp. 895-900. doi : 10.1016/j.crma.2014.09.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.09.015/

[1] R.M. Ali; S.K. Lee; V. Ravichandran; S. Supramanian Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., Volume 25 (2012) no. 3, pp. 344-351

[2] Aspects of Contemporary Complex Analysis (D.A. Brannan; J.G. Clunie, eds.), Academic Press, London, 1980

[3] D.A. Brannan; T.S. Taha On some classes of bi-univalent functions, Stud. Univ. Babeş–Bolyai, Math., Volume 31 (1986) no. 2, pp. 70-77

[4] P. Duren Univalent Functions, Grundlehren der Mathematischen Wissenchaften, vol. 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983

[5] B.A. Frasin; M.K. Aouf New subclasses of bi-univalent functions, Appl. Math. Lett., Volume 24 (2011) no. 9, pp. 1569-1573

[6] A.W. Goodman An invitation to the study of univalent and multivalent functions, Int. J. Math. Math. Sci., Volume 2 (1979) no. 2, pp. 163-186

[7] A.W. Goodman Univalent Functions, vol. I, Mariner Publishing Company Inc., 1983

[8] S.P. Goyal; P. Goswami Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egypt. Math. Soc., Volume 20 (2012), pp. 179-182

[9] T. Hayami; S. Owa Coefficient bounds for bi-univalent functions, Panamer. Math. J., Volume 22 (2012) no. 4, pp. 15-26

[10] M. Lewin On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., Volume 18 (1967), pp. 63-68

[11] X.-F. Li; A.-P. Wang Two new subclasses of bi-univalent functions, Int. Math. Forum, Volume 7 (2012), pp. 1495-1504

[12] J. Privalov Sur les fonctions qui donnent la représentation conforme biunivoque, Rec. Math. D. I. Soc. Math. D. Moscou, Volume 31 (1924), pp. 350-365

[13] S. Sivaprasad Kumar, V. Kumar, V. Ravichandran, Estimates for the initial coefficients of bi-univalent functions, Preprint.

[14] H.M. Srivastava; A.K. Mishra; P. Gochhayat Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., Volume 23 (2010) no. 10, pp. 1188-1192

[15] Q.-H. Xu; Y.-C. Gui; H.M. Srivastava Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., Volume 25 (2012) no. 6, pp. 990-994

[16] Q.-H. Xu; H.M. Srivastava; Z. Li A certain subclass of analytic and close-to-convex functions, Appl. Math. Lett., Volume 24 (2011), pp. 396-401

[17] Q.-H. Xu; H.-G. Xiao; H.M. Srivastava A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., Volume 218 (2012) no. 23, pp. 11461-11465

Cited by Sources:

Comments - Policy