In an attempt to answer the question raised by A.W. Goodman, we obtain a covering theorem, a distortion theorem, a growth theorem, the radius of convexity and an argument estimate of for functions of the class σ of bi-univalent functions.
Dans une tentative de répondre à une question posée par A.W. Goodman, nous obtenons des théorèmes de surjectivité, de déformation et de croissance, ainsi qu'une estimation du rayon de convexité et de l'argument de pour une fonction f dans la classe σ des fonctions bi-univalentes.
Accepted:
Published online:
Srikandan Sivasubramanian 1; Radhakrishnan Sivakumar 1; Teodor Bulboacă 2; Tirunelveli Nellaiappar Shanmugam 3
@article{CRMATH_2014__352_11_895_0, author = {Srikandan Sivasubramanian and Radhakrishnan Sivakumar and Teodor Bulboac\u{a} and Tirunelveli Nellaiappar Shanmugam}, title = {On the class of bi-univalent functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {895--900}, publisher = {Elsevier}, volume = {352}, number = {11}, year = {2014}, doi = {10.1016/j.crma.2014.09.015}, language = {en}, }
TY - JOUR AU - Srikandan Sivasubramanian AU - Radhakrishnan Sivakumar AU - Teodor Bulboacă AU - Tirunelveli Nellaiappar Shanmugam TI - On the class of bi-univalent functions JO - Comptes Rendus. Mathématique PY - 2014 SP - 895 EP - 900 VL - 352 IS - 11 PB - Elsevier DO - 10.1016/j.crma.2014.09.015 LA - en ID - CRMATH_2014__352_11_895_0 ER -
%0 Journal Article %A Srikandan Sivasubramanian %A Radhakrishnan Sivakumar %A Teodor Bulboacă %A Tirunelveli Nellaiappar Shanmugam %T On the class of bi-univalent functions %J Comptes Rendus. Mathématique %D 2014 %P 895-900 %V 352 %N 11 %I Elsevier %R 10.1016/j.crma.2014.09.015 %G en %F CRMATH_2014__352_11_895_0
Srikandan Sivasubramanian; Radhakrishnan Sivakumar; Teodor Bulboacă; Tirunelveli Nellaiappar Shanmugam. On the class of bi-univalent functions. Comptes Rendus. Mathématique, Volume 352 (2014) no. 11, pp. 895-900. doi : 10.1016/j.crma.2014.09.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.09.015/
[1] Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., Volume 25 (2012) no. 3, pp. 344-351
[2] Aspects of Contemporary Complex Analysis (D.A. Brannan; J.G. Clunie, eds.), Academic Press, London, 1980
[3] On some classes of bi-univalent functions, Stud. Univ. Babeş–Bolyai, Math., Volume 31 (1986) no. 2, pp. 70-77
[4] Univalent Functions, Grundlehren der Mathematischen Wissenchaften, vol. 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983
[5] New subclasses of bi-univalent functions, Appl. Math. Lett., Volume 24 (2011) no. 9, pp. 1569-1573
[6] An invitation to the study of univalent and multivalent functions, Int. J. Math. Math. Sci., Volume 2 (1979) no. 2, pp. 163-186
[7] Univalent Functions, vol. I, Mariner Publishing Company Inc., 1983
[8] Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egypt. Math. Soc., Volume 20 (2012), pp. 179-182
[9] Coefficient bounds for bi-univalent functions, Panamer. Math. J., Volume 22 (2012) no. 4, pp. 15-26
[10] On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., Volume 18 (1967), pp. 63-68
[11] Two new subclasses of bi-univalent functions, Int. Math. Forum, Volume 7 (2012), pp. 1495-1504
[12] Sur les fonctions qui donnent la représentation conforme biunivoque, Rec. Math. D. I. Soc. Math. D. Moscou, Volume 31 (1924), pp. 350-365
[13] S. Sivaprasad Kumar, V. Kumar, V. Ravichandran, Estimates for the initial coefficients of bi-univalent functions, Preprint.
[14] Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., Volume 23 (2010) no. 10, pp. 1188-1192
[15] Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., Volume 25 (2012) no. 6, pp. 990-994
[16] A certain subclass of analytic and close-to-convex functions, Appl. Math. Lett., Volume 24 (2011), pp. 396-401
[17] A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., Volume 218 (2012) no. 23, pp. 11461-11465
Cited by Sources:
Comments - Policy