In this note, we prove the existence of a family of extension operators for Sobolev spaces defined on ε-periodic domains. The norms of the operators are shown to be independent of ε. This extension theorem is relevant in the theory of homogenization for PDE's under flux boundary conditions.
Dans cette note, nous prouvons l'existence d'une famile d'opérateurs d'extension pour les espaces de Sobolev définis sur des domaines ε-périodiques. Nous montrons que les normes de ces opérateurs sont indépendantes de ε. Ce théorème est pertinent dans la théorie de l'homogénéisation des EDP avec des conditions aux limites de flux.
Accepted:
Published online:
Martin Höpker 1; Michael Böhm 1
@article{CRMATH_2014__352_10_807_0, author = {Martin H\"opker and Michael B\"ohm}, title = {A note on the existence of extension operators for {Sobolev} spaces on periodic domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {807--810}, publisher = {Elsevier}, volume = {352}, number = {10}, year = {2014}, doi = {10.1016/j.crma.2014.09.002}, language = {en}, }
TY - JOUR AU - Martin Höpker AU - Michael Böhm TI - A note on the existence of extension operators for Sobolev spaces on periodic domains JO - Comptes Rendus. Mathématique PY - 2014 SP - 807 EP - 810 VL - 352 IS - 10 PB - Elsevier DO - 10.1016/j.crma.2014.09.002 LA - en ID - CRMATH_2014__352_10_807_0 ER -
Martin Höpker; Michael Böhm. A note on the existence of extension operators for Sobolev spaces on periodic domains. Comptes Rendus. Mathématique, Volume 352 (2014) no. 10, pp. 807-810. doi : 10.1016/j.crma.2014.09.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.09.002/
[1] An extension theorem from connected sets, and homogenization in general periodic domains, Nonlinear Anal., Volume 18 (1992), pp. 481-496
[2] Introduction to Modeling of Transport Phenomena in Porous Media, Kluwer Academic Publishers, 1990
[3] An extension theorem in SBV and an application to the homogenization of the Mumford–Shah functional in perforated domains, J. Math. Pures Appl., Volume 95 (2011), pp. 349-381
[4] Homogenization of Reticulated Structures, Applied Mathematical Sciences, vol. 136, Springer, 1999
[5] Homogenization of a composite medium with a thermal barrier, Math. Methods Appl. Sci., Volume 27 (2004), pp. 405-425
[6] Homogenization of a system of nonlinear multi-species diffusion–reaction equations in an setting, University of Bremen, Germany, 2013 (Ph.D. thesis)
[7] Extension theorems for homogenization on lattice structures, Appl. Math. Lett., Volume 5 (1992), pp. 73-78
[8] Homogenization results for enzyme catalyzed reactions through porous media, Acta Math. Sci. Ser. B, Volume 29 (2009), pp. 74-82
Cited by Sources:
Comments - Policy