Comptes Rendus
Partial differential equations
A note on the existence of extension operators for Sobolev spaces on periodic domains
Comptes Rendus. Mathématique, Volume 352 (2014) no. 10, pp. 807-810.

In this note, we prove the existence of a family of extension operators for Sobolev spaces defined on ε-periodic domains. The norms of the operators are shown to be independent of ε. This extension theorem is relevant in the theory of homogenization for PDE's under flux boundary conditions.

Dans cette note, nous prouvons l'existence d'une famile d'opérateurs d'extension pour les espaces de Sobolev définis sur des domaines ε-périodiques. Nous montrons que les normes de ces opérateurs sont indépendantes de ε. Ce théorème est pertinent dans la théorie de l'homogénéisation des EDP avec des conditions aux limites de flux.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.09.002

Martin Höpker 1; Michael Böhm 1

1 Center for Industrial Mathematics, FB 3, University of Bremen, Postfach 33 04 40, 28334 Bremen, Germany
@article{CRMATH_2014__352_10_807_0,
     author = {Martin H\"opker and Michael B\"ohm},
     title = {A note on the existence of extension operators for {Sobolev} spaces on periodic domains},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {807--810},
     publisher = {Elsevier},
     volume = {352},
     number = {10},
     year = {2014},
     doi = {10.1016/j.crma.2014.09.002},
     language = {en},
}
TY  - JOUR
AU  - Martin Höpker
AU  - Michael Böhm
TI  - A note on the existence of extension operators for Sobolev spaces on periodic domains
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 807
EP  - 810
VL  - 352
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crma.2014.09.002
LA  - en
ID  - CRMATH_2014__352_10_807_0
ER  - 
%0 Journal Article
%A Martin Höpker
%A Michael Böhm
%T A note on the existence of extension operators for Sobolev spaces on periodic domains
%J Comptes Rendus. Mathématique
%D 2014
%P 807-810
%V 352
%N 10
%I Elsevier
%R 10.1016/j.crma.2014.09.002
%G en
%F CRMATH_2014__352_10_807_0
Martin Höpker; Michael Böhm. A note on the existence of extension operators for Sobolev spaces on periodic domains. Comptes Rendus. Mathématique, Volume 352 (2014) no. 10, pp. 807-810. doi : 10.1016/j.crma.2014.09.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.09.002/

[1] E. Acerbi; V. Chiadò Piat; G. Dal Maso; D. Percivale An extension theorem from connected sets, and homogenization in general periodic domains, Nonlinear Anal., Volume 18 (1992), pp. 481-496

[2] J. Bear; Y. Bachmat Introduction to Modeling of Transport Phenomena in Porous Media, Kluwer Academic Publishers, 1990

[3] F. Cagnetti; L. Scardia An extension theorem in SBV and an application to the homogenization of the Mumford–Shah functional in perforated domains, J. Math. Pures Appl., Volume 95 (2011), pp. 349-381

[4] D. Cioranescu; J. Saint; Jean Paulin Homogenization of Reticulated Structures, Applied Mathematical Sciences, vol. 136, Springer, 1999

[5] M. Mabrouk; S. Hassan Homogenization of a composite medium with a thermal barrier, Math. Methods Appl. Sci., Volume 27 (2004), pp. 405-425

[6] H.S. Mahato Homogenization of a system of nonlinear multi-species diffusion–reaction equations in an H1,p setting, University of Bremen, Germany, 2013 (Ph.D. thesis)

[7] R. Miller Extension theorems for homogenization on lattice structures, Appl. Math. Lett., Volume 5 (1992), pp. 73-78

[8] C. Timofte Homogenization results for enzyme catalyzed reactions through porous media, Acta Math. Sci. Ser. B, Volume 29 (2009), pp. 74-82

Cited by Sources:

Comments - Policy