We show that a positivity improving property of multilinear operators with Gaussian kernels can be determined, with sharp constants, by testing Gaussian functions only. This result can be considered as a reversed form of Lieb's theorem on maximizers of Gaussian kernels.
Nous montrons qu'une propriété d'amélioration de la positivité par les opérateurs multilinéaires à noyaux gaussiens peut être déterminée, avec des constantes exactes, en testant l'opérateur uniquement sur les fonctions gaussiennes. Ce résultat peut être considéré comme une forme inverse du théorème de Lieb sur les maximiseurs des noyaux gaussiens.
Accepted:
Published online:
Franck Barthe 1; Paweł Wolff 2, 3
@article{CRMATH_2014__352_12_1017_0, author = {Franck Barthe and Pawe{\l} Wolff}, title = {Positivity improvement and {Gaussian} kernels}, journal = {Comptes Rendus. Math\'ematique}, pages = {1017--1021}, publisher = {Elsevier}, volume = {352}, number = {12}, year = {2014}, doi = {10.1016/j.crma.2014.09.016}, language = {en}, }
Franck Barthe; Paweł Wolff. Positivity improvement and Gaussian kernels. Comptes Rendus. Mathématique, Volume 352 (2014) no. 12, pp. 1017-1021. doi : 10.1016/j.crma.2014.09.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.09.016/
[1] A remarkable measure preserving diffeomorphism between two convex bodies in , Geom. Dedic., Volume 74 (1999) no. 2, pp. 201-212
[2] Volumes of sections of cubes and related problems, Geometric Aspects of Functional Analysis (1987-1988), Lecture Notes in Math., vol. 1376, Springer, Berlin, 1989, pp. 251-260
[3] Volume ratios and a reverse isoperimetric inequality, J. Lond. Math. Soc. (2), Volume 44 (1991) no. 2, pp. 351-359
[4] An extremal property of the mean width of the simplex, Math. Ann., Volume 310 (1998) no. 4, pp. 685-693
[5] On a reverse form of the Brascamp–Lieb inequality, Invent. Math., Volume 134 (1998) no. 2, pp. 335-361
[6] Optimal Young's inequality and its converse: a simple proof, Geom. Funct. Anal., Volume 8 (1998) no. 2, pp. 234-242
[7] On Gaussian Brunn–Minkowski inequalities, Stud. Math., Volume 191 (2009) no. 3, pp. 283-304
[8] Inequalities in Fourier analysis, Ann. Math. (2), Volume 102 (1975) no. 1, pp. 159-182
[9] The Brascamp–Lieb inequalities: finiteness, structure and extremals, Geom. Funct. Anal., Volume 17 (2008) no. 5, pp. 1343-1415
[10] Positivity improving operators and hypercontractivity, Math. Z., Volume 180 (1982) no. 2, pp. 225-234
[11] Best constants in Young's inequality, its converse, and its generalization to more than three functions, Adv. Math., Volume 20 (1976) no. 2, pp. 151-173
[12] Subadditivity of the entropy and its relation to Brascamp–Lieb type inequalities, Geom. Funct. Anal., Volume 19 (2009) no. 2, pp. 373-405
[13] A sharp analog of Young's inequality on and related entropy inequalities, J. Geom. Anal., Volume 14 (2004) no. 3, pp. 487-520
[14] Improved Hölder and reverse Hölder inequalities for correlated Gaussian random vectors, 2013 (preprint) | arXiv
[15] Short probabilistic proof of the Brascamp–Lieb and Barthe theorems, Can. Math. Bull., Volume 57 (2014) no. 3, pp. 585-597
[16] Gaussian kernels have only Gaussian maximizers, Invent. Math., Volume 102 (1990) no. 1, pp. 179-208
[17] An inequality related to the isoperimetric inequality, Bull. Amer. Math. Soc., Volume 55 (1949), pp. 961-962
[18] The free Markoff field, J. Funct. Anal., Volume 12 (1973), pp. 211-227
Cited by Sources:
Comments - Policy