Comptes Rendus
Partial differential equations/Mathematical economics
Asymptotic expansions for degenerate parabolic equations
Comptes Rendus. Mathématique, Volume 352 (2014) no. 12, pp. 1011-1016.

We prove asymptotic convergence results for some analytical expansions of solutions to degenerate PDEs with applications to financial mathematics. In particular, we combine short-time and global-in-space error estimates, previously obtained in the uniformly parabolic case, with some a priori bounds on “short cylinders”, and we achieve short-time asymptotic convergence of the approximate solution in the degenerate parabolic case.

On démontre des résultats de convergence asymptotique pour certaines expansions analytiques de solutions d'équations aux dérivés partielles dégénérées avec des applications aux mathématiques financières. En particulier, on combine des estimations d'erreur à temps petit, globales dans l'espace, obtenues précédemment dans le cas uniformément parabolique, avec quelques bornes a priori sur de « courts cylindres », et on attend la convergence asymptotique à temps petit de la solution approchée dans le cas parabolique dégénéré.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.09.024

Stefano Pagliarani 1; Andrea Pascucci 2

1 Centre de mathématiques appliquées, École polytechnique & CNRS, route de Saclay, 91128 Palaiseau cedex, France
2 Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, 40126 Bologna, Italy
@article{CRMATH_2014__352_12_1011_0,
     author = {Stefano Pagliarani and Andrea Pascucci},
     title = {Asymptotic expansions for degenerate parabolic equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1011--1016},
     publisher = {Elsevier},
     volume = {352},
     number = {12},
     year = {2014},
     doi = {10.1016/j.crma.2014.09.024},
     language = {en},
}
TY  - JOUR
AU  - Stefano Pagliarani
AU  - Andrea Pascucci
TI  - Asymptotic expansions for degenerate parabolic equations
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 1011
EP  - 1016
VL  - 352
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crma.2014.09.024
LA  - en
ID  - CRMATH_2014__352_12_1011_0
ER  - 
%0 Journal Article
%A Stefano Pagliarani
%A Andrea Pascucci
%T Asymptotic expansions for degenerate parabolic equations
%J Comptes Rendus. Mathématique
%D 2014
%P 1011-1016
%V 352
%N 12
%I Elsevier
%R 10.1016/j.crma.2014.09.024
%G en
%F CRMATH_2014__352_12_1011_0
Stefano Pagliarani; Andrea Pascucci. Asymptotic expansions for degenerate parabolic equations. Comptes Rendus. Mathématique, Volume 352 (2014) no. 12, pp. 1011-1016. doi : 10.1016/j.crma.2014.09.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.09.024/

[1] F. Antonelli; S. Scarlatti Pricing options under stochastic volatility: a power series approach, Finance Stoch., Volume 13 (2009), pp. 269-303

[2] D.G. Aronson Bounds for the fundamental solution of a parabolic equation, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 890-896

[3] E. Benhamou; E. Gobet; M. Miri Expansion formulas for European options in a local volatility model, Int. J. Theor. Appl. Finance, Volume 13 (2010), pp. 603-634

[4] E. Benhamou; E. Gobet; M. Miri Time dependent Heston model, SIAM J. Financ. Math., Volume 1 (2010), pp. 289-325

[5] P. Carr; V. Linetsky A jump to default extended CEV model: an application of Bessel processes, Finance Stoch., Volume 10 (2006), pp. 303-330

[6] R. Constantinescu; N. Costanzino; A.L. Mazzucato; V. Nistor Approximate solutions to second order parabolic equations. I: analytic estimates, J. Math. Phys., Volume 51 (2010), p. 103502, 26

[7] M. Forde; A. Jacquier; R. Lee The small-time smile and term structure of implied volatility under the Heston model, SIAM J. Financ. Math., Volume 3 (2012), pp. 690-708

[8] J.-P. Fouque; G. Papanicolaou; R. Sircar; K. Solna Singular perturbations in option pricing, SIAM J. Appl. Math., Volume 63 (2003), pp. 1648-1665 (electronic)

[9] P. Hagan; D. Woodward Equivalent Black volatilities, Appl. Math. Finance, Volume 6 (1999), pp. 147-159

[10] P. Hagan; D. Kumar; A. Lesniewski; D. Woodward Managing smile risk, Wilmott (2002), pp. 84-108

[11] P. Henry-Labordère A General Asymptotic Implied Volatility for Stochastic Volatility Models, Frontiers in Quantitative Finance, Wiley, 2008

[12] S.L. Heston A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., Volume 6 (1993), pp. 327-343

[13] M. Lorig, S. Pagliarani, A. Pascucci, Analytical expansions for parabolic equations, Preprint.

[14] M. Lorig; S. Pagliarani; A. Pascucci A Taylor series approach to pricing and implied vol for LSV models, J. Risk (2014) (in press)

[15] S. Pagliarani; A. Pascucci Analytical approximation of the transition density in a local volatility model, Cent. Eur. J. Math., Volume 10 (2012) no. 1, pp. 250-270

[16] S. Pagliarani; A. Pascucci; C. Riga Adjoint expansions in local Lévy models, SIAM J. Financ. Math., Volume 4 (2013), pp. 265-296

[17] M. Safonov Estimates near the boundary for solutions of second order parabolic equations, Berlin (1998), pp. 637-647 (electronic)

[18] S. Watanabe Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels, Ann. Probab., Volume 15 (1987) no. 1, pp. 1-39

[19] N. Yoshida Asymptotic expansions of maximum likelihood estimators for small diffusions via the theory of Malliavin–Watanabe, Probab. Theory Relat. Fields, Volume 92 (1992), pp. 275-311

Cited by Sources:

Comments - Policy