Comptes Rendus
Complex analysis/Partial differential equations
On the higher dimensional harmonic analog of the Levinson loglog theorem
[Sur l'analogue harmonique du théorème loglog de Levinson pour plusieurs dimensions]
Comptes Rendus. Mathématique, Volume 352 (2014) no. 11, pp. 889-893.

Soit M:(0,1)[e,+) une fonction décroissante telle que 01loglogM(y)dy<+. Considérons l'ensemble HM de toutes les fonctions u qui sont harmoniques dans P:={(x,y)Rn:xRn1,yR,|x|<1,|y|<1} et satisfont |u(x,y)|M(|y|). On montre que HM est une famille normale dans P.

Let M: (0,1)[e,+) be a decreasing function such that 01loglogM(y)dy<+. Consider the set HM of all functions u harmonic in P:={(x,y):xRn1,yR,|x|<1,|y|<1} and satisfying |u(x,y)|M(|y|). We prove that HM is a normal family in P.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.09.019
Alexander Logunov 1

1 Saint Petersburg State University, Chebyshev Laboratory, 14th Line 29B, Vasilyevsky Island, St. Petersburg, Russia
@article{CRMATH_2014__352_11_889_0,
     author = {Alexander Logunov},
     title = {On the higher dimensional harmonic analog of the {Levinson} $ \mathrm{log}\mathrm{log}$ theorem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {889--893},
     publisher = {Elsevier},
     volume = {352},
     number = {11},
     year = {2014},
     doi = {10.1016/j.crma.2014.09.019},
     language = {en},
}
TY  - JOUR
AU  - Alexander Logunov
TI  - On the higher dimensional harmonic analog of the Levinson $ \mathrm{log}\mathrm{log}$ theorem
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 889
EP  - 893
VL  - 352
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2014.09.019
LA  - en
ID  - CRMATH_2014__352_11_889_0
ER  - 
%0 Journal Article
%A Alexander Logunov
%T On the higher dimensional harmonic analog of the Levinson $ \mathrm{log}\mathrm{log}$ theorem
%J Comptes Rendus. Mathématique
%D 2014
%P 889-893
%V 352
%N 11
%I Elsevier
%R 10.1016/j.crma.2014.09.019
%G en
%F CRMATH_2014__352_11_889_0
Alexander Logunov. On the higher dimensional harmonic analog of the Levinson $ \mathrm{log}\mathrm{log}$ theorem. Comptes Rendus. Mathématique, Volume 352 (2014) no. 11, pp. 889-893. doi : 10.1016/j.crma.2014.09.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.09.019/

[1] D.H. Armitage On growth and decay of harmonic functions, Proc. R. Ir. Acad., Ser. A Math. Phys. Sci., Volume 87 (1987) no. 2, pp. 107-116

[2] S. Axler; P. Bourdon; W. Ramey Harmonic Function Theory, Grad. Texts Math., vol. 137, Springer-Verlag, New York, 2001

[3] F. Bayart; K.-G. Grosse-Erdmann; V. Nestoridis; C. Papadimitropoulos Abstract theory of universal series and applications, Proc. Lond. Math. Soc., Volume 96 (2008), pp. 417-463

[4] A. Beurling Analytic continuation across a linear boundary, Acta Math., Volume 128 (1971), pp. 153-182

[5] T. Carleman Extension d'un théorème de Liouville, Acta Math., Volume 48 (1926), pp. 363-366

[6] Y. Domar On the existence of a largest subharmonic minorant of a given function, Ark. Mat., Volume 3 (1958) no. 5, pp. 429-440

[7] Y. Domar Uniform boundness in families related to subharmonic functions, J. Lond. Math. Soc. (2), Volume 38 (1988) no. 3, pp. 485-491

[8] E.M. Dyn'kin An asymptotic Cauchy problem for the Laplace equation, Ark. Mat., Volume 34 (1996), pp. 245-264

[9] P. Ebenfelt; D. Khavinson On point to point reflection of harmonic functions across real-analytic hypersurfaces in Rn, J. Anal. Math., Volume 68 (1996), pp. 145-182

[10] A. Erdelyi Axially symmetric potentials and fractional integration, J. Soc. Ind. Appl. Math., Volume 13 (1965) no. 1, pp. 216-228

[11] S.J. Gardiner; D. Khavinson Boundary behaviour of universal Taylor series, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014) no. 2, pp. 99-103

[12] P.-M. Gauthier; I. Tamptse Universal overconvergence of homogeneous expansions of harmonic functions, Analysis, Volume 26 (2006), pp. 287-293

[13] V.P. Gurarii On N. Levinson's theorem on normal families of subharmonic functions, Zap. Nauč. Semin. POMI, Volume 19 (1970), pp. 215-220 (in Russian)

[14] R.J.M. Hornblower A growth condition for the MacLane class, Proc. Lond. Math. Soc., Volume 23 (1971), pp. 371-384

[15] D. Khavinson On reflection of harmonic functions in surfaces of revolution, Complex Var. Theory Appl., Volume 17 (1991) no. 1–2, pp. 7-14

[16] P. Koosis The Logarithmic Integral. I, Camb. Stud. Adv. Math., vol. 12, Cambridge University Press, Cambridge, UK, 1988

[17] N. Levinson Gap and Density Theorems, American Mathematical Society Colloquium Publications, vol. 26, American Mathematical Society, New York, 1940

[18] M. Manolaki Universal polynomial expansions of harmonic functions, Potential Anal., Volume 38 (2013), pp. 985-1000

[19] V.I. Matsaev On the growth of entire functions that admit a certain estimate from below, Dokl. Akad. Nauk SSSR, Volume 132 (1960) no. 2, pp. 283-286 (in Russian); Translation in Sov. Math. Dokl., 1, 1960, pp. 548-552

[20] V.I. Matsaev; E.Z. Mogulskii A division theorem for analytic functions with a given majorant, and some of its applications, Zap. Nauč. Semin. POMI, Volume 56 (1976), pp. 73-89 (in Russian)

[21] V. Rao A uniqueness theorem for harmonic functions, Mat. Zametki, Volume 3 (1968), pp. 247-252 (in Russian)

[22] A.Yu. Rashkovskii On radial projection of harmonic measure (V.A. Marchenko, ed.), Operator Theory and Subharmonic Functions, Naukova Dumka, Kiev, 1991, pp. 95-102 (in Russian)

[23] A. Rashkovskii Classical and new loglog theorems, Expo. Math., Volume 27 (2009) no. 4, pp. 271-287

[24] P.J. Rippon On a growth condition related to the MacLane class, J. Lond. Math. Soc. (2), Volume 18 (1978) no. 1, pp. 94-100

[25] A. Weinstein Generalized axially symmetric potential theory, Bull. Amer. Math. Soc., Volume 59 (1953) no. 1, pp. 20-38

Cité par Sources :

Commentaires - Politique