We shall present a measure theoretical approach that, together with the Kantorovich duality, provides an efficient tool to study the optimal transport problem. Specifically, we study the support of optimal plans where the cost function does not satisfy the classical twist condition in the two marginal problem as well as in the multi-marginal case when twistedness is limited to certain subsets.
Dans cet article, nous étudions le problème de transport optimal du point de vue de la théorie de la mesure, à l'aide de la dualité de Kantorovich. En particulier, nous étudions le support des plans optimaux où la fonction coût ne satisfait pas la condition de « twist » dans le problème à deux marginales, ainsi que dans le cas multi-marginales quand la condition « twist » est limitée à des sous-ensembles précis.
Accepted:
Published online:
Abbas Moameni 1
@article{CRMATH_2014__352_12_993_0, author = {Abbas Moameni}, title = {Multi-marginal {Monge{\textendash}Kantorovich} transport problems: {A} characterization of solutions}, journal = {Comptes Rendus. Math\'ematique}, pages = {993--998}, publisher = {Elsevier}, volume = {352}, number = {12}, year = {2014}, doi = {10.1016/j.crma.2014.10.004}, language = {en}, }
Abbas Moameni. Multi-marginal Monge–Kantorovich transport problems: A characterization of solutions. Comptes Rendus. Mathématique, Volume 352 (2014) no. 12, pp. 993-998. doi : 10.1016/j.crma.2014.10.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.10.004/
[1] A remark on nonatomic measures, Ann. Math. Stat., Volume 43 (1972) no. 1, pp. 369-370
[2] Measure Theory, vols. I, II, Springer-Verlag, Berlin, 2007
[3] Optimal transport formulation of electronic density-functional theory, Phys. Rev. A, Volume 85 (Jun 2012), p. 062502
[4] On a class of multidimensional optimal transportation problems, J. Convex Anal., Volume 10 (2003) no. 2, pp. 517-529
[5] Optimal transportation for the determinant, ESAIM Control Optim. Calc. Var., Volume 14 (2008) no. 4, pp. 678-698
[6] Hedonic price equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness, Econom. Theory, Volume 42 (2010), pp. 317-354
[7] Optimal maps for the multidimensional mongekantorovich problem, Commun. Pure Appl. Math., Volume 51 (1998) no. 1, pp. 23-45
[8] A self-dual polar factorization for vector fields, Commun. Pure Appl. Math., Volume 66 (2013) no. 6, pp. 905-933
[9] Induced σ-homomorphisms and a parametrization of measurable sections via extremal preimage measures, Math. Ann., Volume 247 (1980) no. 1, pp. 67-80
[10] Probleme de Monge pour n probabilité, C. R. Acad. Sci. Paris, Ser. I, Volume 334 (2002) no. 9, pp. 793-795
[11] A general condition for Monge solutions in the multi-marginal optimal transport problem | arXiv
[12] Abstract cyclical monotonicity and Monge solutions for the general Monge–Kantorovich problem, Set-Valued Anal., Volume 7 (1999) no. 1, pp. 7-32
[13] A. Moameni, A characterization for solutions of the Monge–Kantorovich mass transport problem, submitted for publication.
[14] A. Moameni, B. Pass, Solutions to multi-marginal optimal transport problems supported on several graphs, in preparation.
[15] Uniqueness and Monge solutions in the multimarginal optimal transportation problem, SIAM J. Math. Anal., Volume 43 (2011) no. 6, pp. 2758-2775
[16] On the local structure of optimal measures in the multimarginal optimal transportation problem, Calc. Var. Partial Differ. Equ., Volume 43 (2012), pp. 529-536
[17] Optimal Transport, Old and New, Grundlehren Math. Wiss., Springer-Verlag, Berlin, 2009
[18] Integral representation in the set of solutions of a generalized moment problem, Math. Ann., Volume 246 (1979/1980) no. 1, pp. 23-32
Cited by Sources:
Comments - Policy