In this work, an intrinsic projectively invariant distance is used to establish a new approach to the study of projective geometry in a Finsler space. It is shown that the projectively invariant distance previously defined is a constant multiple of the Finsler distance when the manifold in question is both forward and backward complete. As a consequence, two projectively related complete Einstein Finsler spaces with constant negative scalar curvature are homothetic. Evidently, this will be true for Finsler spaces of constant flag curvature as well.
Dans ce travail, une distance intrinsèque projectivement invariante est utilisée pour établir une nouvelle approche en vue de l'étude de la géométrie projective dans les espaces de Finsler. Il est démontré que la distance projectivement invariante définie précédemment est un multiple constant de la distance finslérienne dans le cas où celle-ci est complète (à la fois en avant et en arrière). Par conséquent, deux espaces d'Einstein–Finsler complets à courbure scalaire constante négative sont homothétiques. Évidemment, ceci sera vrai aussi pour les espaces de Finsler à courbure sectionelle constante.
Accepted:
Published online:
Maryam Sepasi 1; Behroz Bidabad 1
@article{CRMATH_2014__352_12_999_0, author = {Maryam Sepasi and Behroz Bidabad}, title = {On a projectively invariant distance on {Finsler} spaces of constant negative {Ricci} scalar}, journal = {Comptes Rendus. Math\'ematique}, pages = {999--1003}, publisher = {Elsevier}, volume = {352}, number = {12}, year = {2014}, doi = {10.1016/j.crma.2014.09.011}, language = {en}, }
TY - JOUR AU - Maryam Sepasi AU - Behroz Bidabad TI - On a projectively invariant distance on Finsler spaces of constant negative Ricci scalar JO - Comptes Rendus. Mathématique PY - 2014 SP - 999 EP - 1003 VL - 352 IS - 12 PB - Elsevier DO - 10.1016/j.crma.2014.09.011 LA - en ID - CRMATH_2014__352_12_999_0 ER -
Maryam Sepasi; Behroz Bidabad. On a projectively invariant distance on Finsler spaces of constant negative Ricci scalar. Comptes Rendus. Mathématique, Volume 352 (2014) no. 12, pp. 999-1003. doi : 10.1016/j.crma.2014.09.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.09.011/
[1] Sur les espaces de Finsler à courbures sectionnelles constantes, Acad. R. Belg. Bull. Cl. Sci. (5), Volume 14 (1988), pp. 281-322
[2] Transformations projectives des variétés munies d'une connexion métrique, Ann. Mat. Pura Appl., Volume 148 (1987) no. 1, pp. 251-275
[3] Riemann–Finsler Geometry, Springer-Verlag, 2000
[4] On the projective geometry of paths, Proc. Edinb. Math. Soc., Volume 5 (1937), pp. 103-115
[5] Ricci curvature and Einstein metrics, Global Differential Geometry and Global Analysis, 1979, pp. 42-63
[6] On the foundations of the calculus of variations, Trans. Amer. Math. Soc., Volume 49 (1941), pp. 173-198
[7] A comparison theorem on the Ricci curvature in projective geometry, Ann. Glob. Anal. Geom., Volume 23 (2003), pp. 141-155
[8] Projective invariant metrics for Einstein spaces, Nagoya Math. J., Volume 73 (1979), pp. 171-174
[9] On models of projectively flat Finsler spaces of constant negative curvature, Tensor, Volume 40 (1983), pp. 117-124
[10] A comparison theorem on projective Finsler geometry | arXiv
[11] On projectively related Einstein metrics in Riemann–Finsler geometry, Math. Ann., Volume 320 (2001), pp. 625-647
[12] Some classes of sprays in projective spray geometry, Differ. Geom. Appl., Volume 29 (2011), pp. 606-614
Cited by Sources:
Comments - Policy