[Calcul de fonctions zêta à partir de modèles log lisses]
Nous établissons une formule pour la série volume de Poincaré d'un schéma log lisse. Ceci nous fournit en particulier une nouvelle expression et un ensemble réduit de candidats pôles pour la fonction zêta motivique d'une singularité d'hypersurface et d'une dégénération de variétés de Calabi–Yau.
We establish a formula for the volume Poincaré series of a log smooth scheme. This yields in particular a new expression and a smaller set of candidate poles for the motivic zeta function of a hypersurface singularity and of a degeneration of Calabi–Yau varieties.
Accepté le :
Publié le :
Emmanuel Bultot 1
@article{CRMATH_2015__353_3_261_0, author = {Emmanuel Bultot}, title = {Computing zeta functions on log smooth models}, journal = {Comptes Rendus. Math\'ematique}, pages = {261--264}, publisher = {Elsevier}, volume = {353}, number = {3}, year = {2015}, doi = {10.1016/j.crma.2014.11.014}, language = {en}, }
Emmanuel Bultot. Computing zeta functions on log smooth models. Comptes Rendus. Mathématique, Volume 353 (2015) no. 3, pp. 261-264. doi : 10.1016/j.crma.2014.11.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.11.014/
[1] Geometry on arc spaces of algebraic varieties, Barcelona, 2000 (Progr. Math.), Volume vol. 201, Birkhäuser, Basel, Switzerland (2001), pp. 327-348
[2] An invitation to toric degenerations, Surveys in Differential Geometry, Volume XVI: Geometry of Special Holonomy and Related Topics, Surv. Differ. Geom., vol. 16, Int. Press, Somerville, MA, USA, 2011, pp. 43-78
[3] Espaces d'arcs et invariants d'Alexander, Comment. Math. Helv., Volume 77 (2002) no. 4, pp. 783-820
[4] Motivic zeta functions of Abelian varieties, and the monodromy conjecture, Adv. Math., Volume 227 (2011) no. 1, pp. 610-653
[5] Motivic zeta functions for degenerations of Abelian varieties and Calabi–Yau varieties, Zeta Functions in Algebra and Geometry, Contemp. Math., vol. 566, Amer. Math. Soc., Providence, RI, USA, 2012, pp. 233-259
[6] Logarithmic structures of Fontaine–Illusie, Baltimore, MD, USA, 1988, Johns Hopkins Univ. Press, Baltimore, MD, USA (1989), pp. 191-224
[7] Toric singularities, Amer. J. Math., Volume 116 (1994) no. 5, pp. 1073-1099
[8] Motivic Serre invariants, ramification, and the analytic Milnor fiber, Invent. Math., Volume 168 (2007) no. 1, pp. 133-173
[9] Motivic invariants of rigid varieties, and applications to complex singularities, Motivic Integration and Its Interactions with Model Theory and Non-Archimedean Geometry, Volume I, Lond. Math. Soc. Lect. Note Ser., vol. 383, Cambridge Univ. Press, Cambridge, UK, 2011, pp. 244-304
- What is the Monodromy Property for Degenerations of Calabi-Yau Varieties?, Birational Geometry and Moduli Spaces, Volume 39 (2020), p. 133 | DOI:10.1007/978-3-030-37114-2_8
- Computing motivic zeta functions on log smooth models, Mathematische Zeitschrift, Volume 295 (2020) no. 1-2, p. 427 | DOI:10.1007/s00209-019-02342-5
- Newton Transformations and the Motivic Milnor Fiber of a Plane Curve, Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics (2018), p. 145 | DOI:10.1007/978-3-319-96827-8_7
Cité par 3 documents. Sources : Crossref
Commentaires - Politique