[Complémentabilité des systèmes d'exponentielles]
Nous démontrons que tout système incomplet d'exponentielles complexes dans est un sous-ensemble d'un système complet et minimal d'exponentielles. De plus, nous montrons un résultat analogue pour des systèmes de noyaux reproduisants dans les espaces de de Branges.
We prove that any incomplete systems of complex exponentials in is a subset of some complete and minimal system of exponentials. In addition, we prove an analogous statement for systems of reproducing kernels in de Branges spaces.
Accepté le :
Publié le :
Yurii Belov 1
@article{CRMATH_2015__353_3_215_0, author = {Yurii Belov}, title = {Complementability of exponential systems}, journal = {Comptes Rendus. Math\'ematique}, pages = {215--218}, publisher = {Elsevier}, volume = {353}, number = {3}, year = {2015}, doi = {10.1016/j.crma.2014.12.004}, language = {en}, }
Yurii Belov. Complementability of exponential systems. Comptes Rendus. Mathématique, Volume 353 (2015) no. 3, pp. 215-218. doi : 10.1016/j.crma.2014.12.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.12.004/
[1] Hereditary completeness for systems of exponentials and reproducing kernels, Adv. Math., Volume 235 (2013), pp. 525-554
[2] Strong M-basis property for systems of reproducing kernels in de Branges spaces | arXiv
[3] Unitary discrete Hilbert transforms, J. Anal. Math., Volume 112 (2010), pp. 383-395
[4] Hilbert Spaces of Entire Functions, Prentice–Hall, Englewood Cliffs, 1968
[5] Unconditional bases of exponentials and of reproducing kernels, Leningrad, 1979/1980 (Lecture Notes in Mathematics), Volume vol. 864, Springer, Berlin–New York (1981), pp. 214-335
[6] The Logarithmic Integral, I, Cambridge University Press, Cambridge, UK, 1988
[7] Lectures on Entire Functions, Translations of Mathematical Monographs, vol. 150, American Mathematical Society, Providence, RI, USA, 1996
[8] Basis properties and complements of complex exponential systems, Hokkaido Math. J., Volume 36 (2007) no. 1, pp. 193-206
[9] Completeness of sets of complex exponentials, Adv. Math., Volume 24 (1977), pp. 1-62
[10] On the connection between exponential bases and certain related sequence in , J. Funct. Anal., Volume 130 (1995), pp. 131-160
[11] An Introduction to Nonharmonic Fourier Series, Academic Press, San Diego–London, 2001
Cité par Sources :
☆ Author was supported by RNF grant 14-21-00035.
Commentaires - Politique