[Approximation diophantienne métrique dans les matrices et les groupes de Lie]
Nous étudions l'exposant diophantien des sous-variétés analytiques de matrices réelles et répondons à certaines questions posées par Beresnevich, Kleinbock et Margulis. Nous identifions une famille d'obstructions algébriques à l'extrémalité d'une telle sous-variété, et donnons une formule pour l'exposant lorsque celle-ci est définie sur . Enfin, nous appliquons ces résultats à la détermination de l'exposant diophantien des groupes de Lie nilpotents rationnels.
We study the Diophantine exponent of analytic submanifolds of real matrices, answering questions of Beresnevich, Kleinbock, and Margulis. We identify a family of algebraic obstructions to the extremality of such a submanifold, and give a formula for the exponent when the submanifold is algebraic and defined over . We then apply these results to the determination of the Diophantine exponent of rational nilpotent Lie groups.
Accepté le :
Publié le :
Menny Aka 1 ; Emmanuel Breuillard 2 ; Lior Rosenzweig 3 ; Nicolas de Saxcé 4
@article{CRMATH_2015__353_3_185_0, author = {Menny Aka and Emmanuel Breuillard and Lior Rosenzweig and Nicolas de Saxc\'e}, title = {On metric {Diophantine} approximation in matrices and {Lie} groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {185--189}, publisher = {Elsevier}, volume = {353}, number = {3}, year = {2015}, doi = {10.1016/j.crma.2014.12.007}, language = {en}, }
TY - JOUR AU - Menny Aka AU - Emmanuel Breuillard AU - Lior Rosenzweig AU - Nicolas de Saxcé TI - On metric Diophantine approximation in matrices and Lie groups JO - Comptes Rendus. Mathématique PY - 2015 SP - 185 EP - 189 VL - 353 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2014.12.007 LA - en ID - CRMATH_2015__353_3_185_0 ER -
Menny Aka; Emmanuel Breuillard; Lior Rosenzweig; Nicolas de Saxcé. On metric Diophantine approximation in matrices and Lie groups. Comptes Rendus. Mathématique, Volume 353 (2015) no. 3, pp. 185-189. doi : 10.1016/j.crma.2014.12.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.12.007/
[1] Diophantine properties of nilpotent Lie groups, Compos. Math. (2015) (32 pages. Published online: 13 January 2015) | DOI
[2] M. Aka, E. Breuillard, L. Rosenzweig, N. de Saxcé, Metric Diophantine approximation on matrices and Lie groups, in preparation.
[3] On the spectral gap for finitely generated subgroups of , Invent. Math., Volume 171 (2008), pp. 83-121
[4] V. Beresnevich, D. Kleinbock, G. Margulis, Non-planarity and metric Diophantine approximation for systems of linear forms, J. Théor. Nombres Bordeaux, preprint , in press. | arXiv
[5] Divergent trajectories of flows on homogeneous spaces and Diophantine approximation, J. Reine Angew. Math., Volume 359 (1985), pp. 55-89
[6] Spectra of elements in the group ring of , J. Eur. Math. Soc., Volume 1 (1999) no. 1, pp. 51-85
[7] Open problems in dynamics and related fields, J. Mod. Dyn., Volume 1 (2007) no. 1, pp. 1-35
[8] Extremal subspaces and their submanifolds, Geom. Funct. Anal., Volume 13 (2003) no. 2, pp. 437-466
[9] An extension of quantitative nondivergence and applications to Diophantine exponents, Trans. Amer. Math. Soc., Volume 360 (2008) no. 12, pp. 6497-6523
[10] An ‘almost all versus no’ dichotomy in homogeneous dynamics and Diophantine approximation, Geom. Dedic., Volume 149 (2010), pp. 205-218
[11] Flows on homogeneous spaces and Diophantine approximation on manifolds, Ann. Math., Volume 148 (1998) no. 1, pp. 339-360
[12] Metric Diophantine approximation for systems of linear forms via dynamics, Int. J. Number Theory, Volume 6 (2010) no. 5, pp. 1139-1168
[13] The action of unipotent groups in a lattice space, Mat. Sb., Volume 86 (1971) no. 128, pp. 552-556
Cité par Sources :
Commentaires - Politique