Our objective in this paper is to consider some basic properties of the familiar Chebyshev polynomials in the theory of analytic functions. We investigate some basic useful characteristics for a class , , of functions f, with , , analytic in the open unit disc satisfying the condition that
Notre propos dans cette Note est d'étudier quelques propriétés de base des polynômes de Chebyshev habituels en théorie des fonctions analytiques. Nous considérons plusieurs caractéristiques fondamentales pour les classes , de fonctions f satisfaisant , , analytiques dans le disque unité ouvert et telles que pour , on ait :
Accepted:
Published online:
Jacek Dziok 1; Ravinder Krishna Raina 2; Janusz Sokół 3
@article{CRMATH_2015__353_5_433_0, author = {Jacek Dziok and Ravinder Krishna Raina and Janusz Sok\'o{\l}}, title = {Application of {Chebyshev} polynomials to classes of analytic functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {433--438}, publisher = {Elsevier}, volume = {353}, number = {5}, year = {2015}, doi = {10.1016/j.crma.2015.02.001}, language = {en}, }
TY - JOUR AU - Jacek Dziok AU - Ravinder Krishna Raina AU - Janusz Sokół TI - Application of Chebyshev polynomials to classes of analytic functions JO - Comptes Rendus. Mathématique PY - 2015 SP - 433 EP - 438 VL - 353 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2015.02.001 LA - en ID - CRMATH_2015__353_5_433_0 ER -
Jacek Dziok; Ravinder Krishna Raina; Janusz Sokół. Application of Chebyshev polynomials to classes of analytic functions. Comptes Rendus. Mathématique, Volume 353 (2015) no. 5, pp. 433-438. doi : 10.1016/j.crma.2015.02.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.02.001/
[1] On the integral convolution of certain classes of analytic functions, Taiwanese J. Math., Volume 13 (2009) no. 5, pp. 1387-1396
[2] A general solution of the Fekete–Szegö problem, Bound. Value Probl. (2013) (Aricle ID 2013:98)
[3] Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers, Comput. Math. Appl., Volume 61 (2011) no. 9, pp. 2605-2613
[4] On alpha-convex functions related to shell-like functions connected with Fibonacci numbers, Appl. Math. Comput., Volume 218 (2011), pp. 966-1002
[5] On uniformly convex functions, Ann. Polon. Math., Volume 56 (1991), pp. 87-92
[6] Some problems for certain family of starlike functions, Math. Comp. Modelling, Volume 55 (2012), pp. 2134-2140
[7] Linear operators associated with k-uniformly convex functions, Integral Transforms Spec. Funct., Volume 9 (2000) no. 2, pp. 121-132
[8] Conic regions and k-uniform convexity II, Folia Sci. Univ. Tech. Resov., Volume 22 (1998), pp. 65-78
[9] Conic regions and k-uniform convexity, J. Comput. Appl. Math., Volume 105 (1999), pp. 327-336
[10] Conic regions and k-starlike functions, Rev. Roumaine Math. Pures Appl., Volume 45 (2000), pp. 647-657
[11] Geometric properties of subclasses of starlike functions, J. Comput. Appl. Math., Volume 155 (2003), pp. 383-387
[12] Uniformly convex functions, Ann. Polon. Math., Volume 57 (1992) no. 2, pp. 165-175
[13] Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., Volume 118 (1993), pp. 189-196
[14] On some subclass of strongly starlike functions, Demonstratio Math., Volume 31 (1998) no. 1, pp. 81-86
[15] On starlike functions connected with Fibonacci numbers, Folia Scient. Univ. Tech. Resoviensis, Volume 175 (1999), pp. 111-116
[16] A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes of Analytic Functions with an Account of the Principal Transcendental Function, Cambridge University Press, 1963
Cited by Sources:
Comments - Policy