[Existence de solutions à énergie finie et énergie minimale pour des systèmes couplés d'équations de Schrödinger–KdV non linéaires]
On montre l'existence de solutions à énergie finie et énergie minimale pour des systèmes couplés d'équations de Schrödinger–Korteweg–de Vries non linéaires, en fonction de la taille du coefficient de couplage.
We prove the existence of bound and ground states for a system of coupled nonlinear Schrödinger–Korteweg–de Vries equations, depending on the size of the coupling coeffi-cient.
Accepté le :
Publié le :
Eduardo Colorado 1, 2
@article{CRMATH_2015__353_6_511_0, author = {Eduardo Colorado}, title = {Existence of bound and ground states for a system of coupled nonlinear {Schr\"odinger{\textendash}KdV} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {511--516}, publisher = {Elsevier}, volume = {353}, number = {6}, year = {2015}, doi = {10.1016/j.crma.2015.03.011}, language = {en}, }
TY - JOUR AU - Eduardo Colorado TI - Existence of bound and ground states for a system of coupled nonlinear Schrödinger–KdV equations JO - Comptes Rendus. Mathématique PY - 2015 SP - 511 EP - 516 VL - 353 IS - 6 PB - Elsevier DO - 10.1016/j.crma.2015.03.011 LA - en ID - CRMATH_2015__353_6_511_0 ER -
Eduardo Colorado. Existence of bound and ground states for a system of coupled nonlinear Schrödinger–KdV equations. Comptes Rendus. Mathématique, Volume 353 (2015) no. 6, pp. 511-516. doi : 10.1016/j.crma.2015.03.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.03.011/
[1] Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006) no. 7, pp. 453-458
[2] Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc. (2), Volume 75 (2007) no. 1, pp. 67-82
[3] Dual variational methods in critical point theory and applications, J. Funct. Anal., Volume 14 (1973), pp. 349-381
[4] Existence results for some systems of coupled fractional nonlinear Schrödinger equations, Recent Trends in Nonlinear Partial Differential Equations. II. Stationary Problems, Contemp. Math., vol. 595, Amer. Math. Soc., Providence, RI, USA, 2013, pp. 135-150
[5] Positive solutions to some systems of coupled nonlinear Schrödinger equations, Nonlinear Anal., Volume 110 (2014), pp. 104-112
[6] On the existence of bound and ground states for some coupled nonlinear Schrödinger–Korteweg–de Vries equations, 2014 (Preprint) | arXiv
[7] Existence of bound states for the coupled Schrödinger–KdV system with cubic nonlinearity, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010) no. 19–20, pp. 1079-1082
[8] On the variational principle, J. Math. Anal. Appl., Volume 47 (1974), pp. 324-353
[9] The resonant interaction between a long internal gravity wave and a surface gravity wave packet, J. Phys. Soc. Jpn., Volume 52 (1983) no. 1, pp. 1982-1995
[10] The concentration-compactness principle in the calculus of variations. The locally compact case, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 1 (1984), pp. 223-283
[11] On soliton solutions to a class of Schrödinger–KdV systems, Proc. Amer. Math. Soc., Volume 141 (2013) no. 10, pp. 3477-3484
[12] Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations, Commun. Pure Appl. Anal., Volume 11 (2012) no. 3, pp. 1003-1011
Cité par Sources :
Commentaires - Politique