Comptes Rendus
Dynamical systems
The C0 general density theorem for geodesic flows
[Le théorème de densité de Pugh C0 pour les flots géodésiques]
Comptes Rendus. Mathématique, Volume 353 (2015) no. 6, pp. 545-549.

Given a closed Riemannian manifold, we prove the C0-general density theorem for continuous geodesic flows. More precisely, we prove that there exists a residual (in the C0-sense) subset of the continuous geodesic flows such that, in that residual subset, the geodesic flow exhibits dense closed orbits.

Étant donnée une variété riemannienne compacte sans bord, nous démontrons un théorème de densité C0-générique pour les flots géodésiques et, plus précisément, nous prouvons qu'il existe une partie C0-résiduelle de l'ensemble des flots géodésiques continus, telle que tout flot dans cette partie admet un ensemble dense d'orbites périodiques.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.03.012

Mário Bessa 1 ; Maria Joana Torres 2

1 CMA-UBI, Departamento de Matemática, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
2 CMAT, Departamento de Matemática e Aplicações, Universidade do Minho, Campus de Gualtar, 4700-057 Braga, Portugal
@article{CRMATH_2015__353_6_545_0,
     author = {M\'ario Bessa and Maria Joana Torres},
     title = {The $ {C}^{0}$ general density theorem for geodesic flows},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {545--549},
     publisher = {Elsevier},
     volume = {353},
     number = {6},
     year = {2015},
     doi = {10.1016/j.crma.2015.03.012},
     language = {en},
}
TY  - JOUR
AU  - Mário Bessa
AU  - Maria Joana Torres
TI  - The $ {C}^{0}$ general density theorem for geodesic flows
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 545
EP  - 549
VL  - 353
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crma.2015.03.012
LA  - en
ID  - CRMATH_2015__353_6_545_0
ER  - 
%0 Journal Article
%A Mário Bessa
%A Maria Joana Torres
%T The $ {C}^{0}$ general density theorem for geodesic flows
%J Comptes Rendus. Mathématique
%D 2015
%P 545-549
%V 353
%N 6
%I Elsevier
%R 10.1016/j.crma.2015.03.012
%G en
%F CRMATH_2015__353_6_545_0
Mário Bessa; Maria Joana Torres. The $ {C}^{0}$ general density theorem for geodesic flows. Comptes Rendus. Mathématique, Volume 353 (2015) no. 6, pp. 545-549. doi : 10.1016/j.crma.2015.03.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.03.012/

[1] R. Abraham Bumpy metrics, Proc. Sympos. Pure Math. (S.S. Chern; S. Smale, eds.), Volume vol. XIV (1970), pp. 1-3

[2] D.V. Anosov On generic properties of closed geodesics, Math. USSR, Izv., Volume 21 (1983), pp. 1-29

[3] L. Buhovsky; S. Seyfaddini Uniqueness of generating Hamiltonians for topological Hamiltonian flows, J. Symplectic Geom., Volume 11 (2013) no. 1, pp. 37-52

[4] G. Contreras-Barandiarán; G.P. Paternain Genericity of geodesic flows with positive topological entropy on S2, J. Differ. Geom., Volume 61 (2002) no. 1, pp. 1-49

[5] F. Daalderop; R. Fokkink Chaotic homeomorphisms are generic, Topol. Appl., Volume 102 (2000), pp. 297-302

[6] M.K. Fort Category theorems, Fundam. Math., Volume 42 (1955), pp. 276-288

[7] E.M. Coven; J. Madden; Z. Nitecki A note on generic properties of continuous maps, Ergodic Theory and Dynamical Systems, II, Prog. Math., vol. 21, Birkhäuser, Boston, MA, USA, 1982, pp. 97-101

[8] M.W. Hirsch Differential Topology, Graduate Texts in Mathematics, vol. 33, Springer, 1976

[9] M. Hurley On proofs of the C0 general density theorem, Proc. Amer. Math. Soc., Volume 124 (1996) no. 4, pp. 1305-1309

[10] A. Katok; B. Hasselblatt Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, 1995

[11] W. Klingenberg; F. Takens Generic properties of geodesic flows, Math. Ann., Volume 197 (1972) no. 4, pp. 323-334

[12] K. Kuratowski Topology, vol. 1, Academic Press, 1966

[13] S. Müller; Y.-G. Oh The group of Hamiltonian homeomorphisms and C0-symplectic topology, J. Symplectic Geom., Volume 5 (2007) no. 2, pp. 167-219

[14] S. Müller; P. Spaeth Topological contact dynamics III. Uniqueness of the topological Hamiltonian and C0-rigidity of the geodesic flow, 2013 (preprint) | arXiv

[15] Y.-G. Oh The group of Hamiltonian homeomorphisms and continuous Hamiltonian flows, Symplectic Topology and Measure Preserving Dynamical Systems, Contemp. Math., vol. 512, Amer. Math. Soc., Providence, RI, USA, 2010, pp. 149-177

[16] J. Palis; W. de Melo Geometric Theory of Dynamical Systems. An Introduction, Springer-Verlag, New York, Berlin, 1982

[17] J. Palis; C. Pugh; M. Shub; D. Sullivan Genericity theorems in topological dynamics, Dynamical Systems – Warwick 1974, Lecture Notes in Math., vol. 468, Springer, Berlin, 1975, pp. 241-250

[18] C. Pugh An improved closing lemma and a general density theorem, Amer. J. Math., Volume 89 (1967) no. 4, pp. 1010-1021

[19] C. Pugh; C. Robinson The C1 closing lemma, including Hamiltonians, Ergod. Theory Dyn. Syst., Volume 3 (1983), pp. 261-313

[20] H.-B. Rademacher On a generic property of geodesic flows, Math. Ann., Volume 298 (1994) no. 1, pp. 101-116

[21] L. Rifford Closing geodesics in C1 topology, J. Differ. Geom., Volume 91 (2012) no. 3, pp. 361-382

[22] C. Viterbo On the uniqueness of generating Hamiltonian for continuous limits of Hamiltonians flows, Int. Math. Res. Not. (2006) Art. ID 34028, 9 p.; Erratum to: On the uniqueness of generating Hamiltonian for continuous limits of Hamiltonians flows, Int. Math. Res. Not. (2006), Art. ID 38784, 4 p

  • Assis Azevedo; Davide Azevedo; Mário Bessa; Maria Joana Torres The closing lemma and the planar general density theorem for Sobolev maps, Proceedings of the American Mathematical Society, Volume 149 (2021) no. 4, pp. 1687-1696 | DOI:10.1090/proc/15352 | Zbl:1470.37069
  • Mário Bessa A note on expansiveness and hyperbolicity for generic geodesic flows, Mathematical Physics, Analysis and Geometry, Volume 21 (2018) no. 2, p. 9 (Id/No 14) | DOI:10.1007/s11040-018-9271-7 | Zbl:1395.37018
  • Mário Bessa; Maria Joana Torres; Paulo Varandas On the periodic orbits, shadowing and strong transitivity of continuous flows, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 175 (2018), pp. 191-209 | DOI:10.1016/j.na.2018.06.002 | Zbl:1404.53111

Cité par 3 documents. Sources : zbMATH

Commentaires - Politique