Comptes Rendus
Number theory/Dynamical systems
A polynomial version of Sarnak's conjecture
[Une version polynomiale de la conjecture de Sarnak]
Comptes Rendus. Mathématique, Volume 353 (2015) no. 7, pp. 569-572.

Motivés par les variations de la conjecture de Sarnak établies par El Abdalaoui, Kulaga-Przymus, Lemańczyk et de la Rue ainsi que par l'observation de ce que la fonction de Möbius est un bon poids (avec limite zéro) pour le théorème ergodique polynomial ponctuel, nous introduisons une version polynomiale de la conjecture de Sarnak pour les systèmes minimaux.

Motivated by the variations of Sarnak's conjecture due to El Abdalaoui, Kulaga-Przymus, Lemańczyk, de la Rue and by the observation that the Möbius function is a good weight (with limit zero) for the polynomial pointwise ergodic theorem, we introduce a polynomial version of the Sarnak conjecture for minimal systems.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.04.009

Tanja Eisner 1

1 Institute of Mathematics, University of Leipzig, P.O. Box 100 920, 04009 Leipzig, Germany
@article{CRMATH_2015__353_7_569_0,
     author = {Tanja Eisner},
     title = {A polynomial version of {Sarnak's} conjecture},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {569--572},
     publisher = {Elsevier},
     volume = {353},
     number = {7},
     year = {2015},
     doi = {10.1016/j.crma.2015.04.009},
     language = {en},
}
TY  - JOUR
AU  - Tanja Eisner
TI  - A polynomial version of Sarnak's conjecture
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 569
EP  - 572
VL  - 353
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2015.04.009
LA  - en
ID  - CRMATH_2015__353_7_569_0
ER  - 
%0 Journal Article
%A Tanja Eisner
%T A polynomial version of Sarnak's conjecture
%J Comptes Rendus. Mathématique
%D 2015
%P 569-572
%V 353
%N 7
%I Elsevier
%R 10.1016/j.crma.2015.04.009
%G en
%F CRMATH_2015__353_7_569_0
Tanja Eisner. A polynomial version of Sarnak's conjecture. Comptes Rendus. Mathématique, Volume 353 (2015) no. 7, pp. 569-572. doi : 10.1016/j.crma.2015.04.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.04.009/

[1] H. El Abdalaoui; J. Kulaga-Przymus; M. Lemańczyk; T. de la Rue The Chowla and the Sarnak conjectures from ergodic theory point of view (preprint, available at) | arXiv

[2] V. Bergelson; A. Leibman Polynomial extensions of van der Waerden's and Szemeredi's theorems, J. Amer. Math. Soc., Volume 9 (1996), pp. 725-753

[3] J. Bourgain Pointwise ergodic theorems for arithmetic sets, Publ. Math. IHÉS, Volume 69 (1989), pp. 5-45 (with an appendix by the author, Harry Furstenberg, Yitzhak Katznelson, and Donald S. Ornstein)

[4] J. Bourgain; P. Sarnak; T. Ziegler Distjointness of Möbius from horocycle flows (preprint) | arXiv

[5] Q. Chu Convergence of weighted polynomial multiple ergodic averages, Proc. Amer. Math. Soc., Volume 137 (2009), pp. 1363-1369

[6] C. Cuny; M. Weber Ergodic theorems with arithmetic weights (preprint, available at) | arXiv

[7] N. Frantzikinakis; B. Host Multiple ergodic theorems for arithmetic sets (preprint, available at) | arXiv

[8] H. Furstenberg Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Anal. Math., Volume 31 (1977), pp. 204-256

[9] T.N.T. Goodman Topological sequence entropy, Proc. Lond. Math. Soc., Volume 29 (1974), pp. 331-350

[10] B. Green; T. Tao Quadratic uniformity of the Möbius function, Ann. Inst. Fourier, Volume 58 (2008), pp. 1863-1935

[11] B. Green; T. Tao The quantitative behaviour of polynomial orbits on nilmanifolds, Ann. Math. (2), Volume 175 (2012), pp. 465-540

[12] B. Green; T. Tao The Möbius function is strongly orthogonal to nilsequences, Ann. Math. (2), Volume 175 (2012), pp. 541-566

[13] B. Host; B. Kra; A. Maass Complexity of nilsystems and systems lacking nilfactors, J. Anal. Math., Volume 124 (2014), pp. 261-295

[14] A. Leibman Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold, Ergod. Theory Dyn. Syst., Volume 25 (2005), pp. 201-213

[15] P. Sarnak Three lectures on the Möbius Function randomness and dynamics, 2010 http://publications.ias.edu/sarnak/paper/506 (see)

[16] T. Tao The Chowla conjecture and the Sarnak conjecture https://terrytao.wordpress.com/2012/10/14/the-chowla-conjecture-and-the-sarnak-conjecture/ (see)

[17] T. Ziegler A soft proof of orthogonality of Möbius to nilflows http://tx.technion.ac.il/~tamarzr/soft-green-tao.pdf (see)

Cité par Sources :

Commentaires - Politique