[Une version polynomiale de la conjecture de Sarnak]
Motivés par les variations de la conjecture de Sarnak établies par El Abdalaoui, Kulaga-Przymus, Lemańczyk et de la Rue ainsi que par l'observation de ce que la fonction de Möbius est un bon poids (avec limite zéro) pour le théorème ergodique polynomial ponctuel, nous introduisons une version polynomiale de la conjecture de Sarnak pour les systèmes minimaux.
Motivated by the variations of Sarnak's conjecture due to El Abdalaoui, Kulaga-Przymus, Lemańczyk, de la Rue and by the observation that the Möbius function is a good weight (with limit zero) for the polynomial pointwise ergodic theorem, we introduce a polynomial version of the Sarnak conjecture for minimal systems.
Accepté le :
Publié le :
Tanja Eisner 1
@article{CRMATH_2015__353_7_569_0, author = {Tanja Eisner}, title = {A polynomial version of {Sarnak's} conjecture}, journal = {Comptes Rendus. Math\'ematique}, pages = {569--572}, publisher = {Elsevier}, volume = {353}, number = {7}, year = {2015}, doi = {10.1016/j.crma.2015.04.009}, language = {en}, }
Tanja Eisner. A polynomial version of Sarnak's conjecture. Comptes Rendus. Mathématique, Volume 353 (2015) no. 7, pp. 569-572. doi : 10.1016/j.crma.2015.04.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.04.009/
[1] The Chowla and the Sarnak conjectures from ergodic theory point of view (preprint, available at) | arXiv
[2] Polynomial extensions of van der Waerden's and Szemeredi's theorems, J. Amer. Math. Soc., Volume 9 (1996), pp. 725-753
[3] Pointwise ergodic theorems for arithmetic sets, Publ. Math. IHÉS, Volume 69 (1989), pp. 5-45 (with an appendix by the author, Harry Furstenberg, Yitzhak Katznelson, and Donald S. Ornstein)
[4] Distjointness of Möbius from horocycle flows (preprint) | arXiv
[5] Convergence of weighted polynomial multiple ergodic averages, Proc. Amer. Math. Soc., Volume 137 (2009), pp. 1363-1369
[6] Ergodic theorems with arithmetic weights (preprint, available at) | arXiv
[7] Multiple ergodic theorems for arithmetic sets (preprint, available at) | arXiv
[8] Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Anal. Math., Volume 31 (1977), pp. 204-256
[9] Topological sequence entropy, Proc. Lond. Math. Soc., Volume 29 (1974), pp. 331-350
[10] Quadratic uniformity of the Möbius function, Ann. Inst. Fourier, Volume 58 (2008), pp. 1863-1935
[11] The quantitative behaviour of polynomial orbits on nilmanifolds, Ann. Math. (2), Volume 175 (2012), pp. 465-540
[12] The Möbius function is strongly orthogonal to nilsequences, Ann. Math. (2), Volume 175 (2012), pp. 541-566
[13] Complexity of nilsystems and systems lacking nilfactors, J. Anal. Math., Volume 124 (2014), pp. 261-295
[14] Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold, Ergod. Theory Dyn. Syst., Volume 25 (2005), pp. 201-213
[15] Three lectures on the Möbius Function randomness and dynamics, 2010 http://publications.ias.edu/sarnak/paper/506 (see)
[16] The Chowla conjecture and the Sarnak conjecture https://terrytao.wordpress.com/2012/10/14/the-chowla-conjecture-and-the-sarnak-conjecture/ (see)
[17] A soft proof of orthogonality of Möbius to nilflows http://tx.technion.ac.il/~tamarzr/soft-green-tao.pdf (see)
Cité par Sources :
Commentaires - Politique