Comptes Rendus
Partial differential equations/Mathematical physics
From hard spheres dynamics to the Stokes–Fourier equations: An L2 analysis of the Boltzmann–Grad limit
Comptes Rendus. Mathématique, Volume 353 (2015) no. 7, pp. 623-627.

We derive the Stokes–Fourier equations in dimension 2 as the limiting dynamics of a system of N hard spheres of diameter ε when N, ε0, Nε=α, using the linearized Boltzmann equation as an intermediate step. Our proof is based on the strategy of Lanford [6], and on the pruning procedure developed in [3] to improve the convergence time. The main novelty here is that uniform a priori estimates come from a L2 bound on the initial data, the time propagation of which involves a fine symmetry argument and a systematic study of recollisions.

Les équations de Stokes–Fourier sont obtenues, en dimension 2, comme dynamique limite d'un système de N sphères dures de diamètre ε quand N, ε0, Nε=α, en utilisant l'équation de Boltzmann linéarisée comme étape intermédiaire. Notre preuve est basée sur la stratégie de Lanford [6] et sur la procédure de troncature développée dans [3] pour améliorer le temps de convergence. La principale nouveauté ici est que les estimations a priori uniformes viennent d'une borne L2 sur la donnée initiale, dont la propagation en temps repose sur un argument fin de symétrie et une étude systématique des recollisions.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2015.04.013

Thierry Bodineau 1; Isabelle Gallagher 2; Laure Saint-Raymond 3

1 CNRS & École polytechnique, Centre de mathématiques appliquées, route de Saclay, 91128 Palaiseau, France
2 Université Paris-Diderot, Institut de mathématiques de Jussieu, Paris Rive Gauche, 75205 Paris cedex 13, France
3 Université Pierre-et-Marie-Curie & École normale supérieure, Département de mathématiques et applications, 11, rue Pierre-et-Marie-Curie, 75231 Paris cedex 05, France
@article{CRMATH_2015__353_7_623_0,
     author = {Thierry Bodineau and Isabelle Gallagher and Laure Saint-Raymond},
     title = {From hard spheres dynamics to the {Stokes{\textendash}Fourier} equations: {An} $ {L}^{2}$ analysis of the {Boltzmann{\textendash}Grad} limit},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {623--627},
     publisher = {Elsevier},
     volume = {353},
     number = {7},
     year = {2015},
     doi = {10.1016/j.crma.2015.04.013},
     language = {en},
}
TY  - JOUR
AU  - Thierry Bodineau
AU  - Isabelle Gallagher
AU  - Laure Saint-Raymond
TI  - From hard spheres dynamics to the Stokes–Fourier equations: An $ {L}^{2}$ analysis of the Boltzmann–Grad limit
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 623
EP  - 627
VL  - 353
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2015.04.013
LA  - en
ID  - CRMATH_2015__353_7_623_0
ER  - 
%0 Journal Article
%A Thierry Bodineau
%A Isabelle Gallagher
%A Laure Saint-Raymond
%T From hard spheres dynamics to the Stokes–Fourier equations: An $ {L}^{2}$ analysis of the Boltzmann–Grad limit
%J Comptes Rendus. Mathématique
%D 2015
%P 623-627
%V 353
%N 7
%I Elsevier
%R 10.1016/j.crma.2015.04.013
%G en
%F CRMATH_2015__353_7_623_0
Thierry Bodineau; Isabelle Gallagher; Laure Saint-Raymond. From hard spheres dynamics to the Stokes–Fourier equations: An $ {L}^{2}$ analysis of the Boltzmann–Grad limit. Comptes Rendus. Mathématique, Volume 353 (2015) no. 7, pp. 623-627. doi : 10.1016/j.crma.2015.04.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.04.013/

[1] C. Bardos; F. Golse; D. Levermore Sur les limites asymptotiques de la théorie cinétique conduisant à la dynamique des fluides incompressibles, C. R. Acad. Sci. Paris, Ser. I, Volume 309 (1989) no. 11, pp. 727-732

[2] H. van Beijeren; O.E. Lanford; J.L. Lebowitz; H. Spohn Equilibrium time correlation functions in the low density limit, J. Stat. Phys., Volume 22 (1980), pp. 237-257

[3] T. Bodineau; I. Gallagher; L. Saint-Raymond The Brownian motion as the limit of a deterministic system of hard-spheres, Invent. Math. (2015), pp. 1-61 (in press) | DOI

[4] T. Bodineau, I. Gallagher, L. Saint-Raymond, From hard spheres dynamics to the Stokes–Fourier equations: an L2 analysis of the Boltzmann–Grad limit, in preparation.

[5] I. Gallagher; L. Saint-Raymond; B. Texier From Newton to Boltzmann: The Case of Hard-Spheres and Short-Range Potentials, Zurich Lectures in Advanced Mathematics, European Mathematical Society, Zürich, Switzerland, 2014

[6] O.E. Lanford Time evolution of large classical systems (J. Moser, ed.), Lecture Notes in Physics, vol. 38, Springer Verlag, 1975, pp. 1-111

Cited by Sources:

Comments - Policy