We derive the Stokes–Fourier equations in dimension 2 as the limiting dynamics of a system of N hard spheres of diameter ε when , , , using the linearized Boltzmann equation as an intermediate step. Our proof is based on the strategy of Lanford [6], and on the pruning procedure developed in [3] to improve the convergence time. The main novelty here is that uniform a priori estimates come from a bound on the initial data, the time propagation of which involves a fine symmetry argument and a systematic study of recollisions.
Les équations de Stokes–Fourier sont obtenues, en dimension 2, comme dynamique limite d'un système de N sphères dures de diamètre ε quand , , , en utilisant l'équation de Boltzmann linéarisée comme étape intermédiaire. Notre preuve est basée sur la stratégie de Lanford [6] et sur la procédure de troncature développée dans [3] pour améliorer le temps de convergence. La principale nouveauté ici est que les estimations a priori uniformes viennent d'une borne sur la donnée initiale, dont la propagation en temps repose sur un argument fin de symétrie et une étude systématique des recollisions.
Accepted:
Published online:
Thierry Bodineau 1; Isabelle Gallagher 2; Laure Saint-Raymond 3
@article{CRMATH_2015__353_7_623_0, author = {Thierry Bodineau and Isabelle Gallagher and Laure Saint-Raymond}, title = {From hard spheres dynamics to the {Stokes{\textendash}Fourier} equations: {An} $ {L}^{2}$ analysis of the {Boltzmann{\textendash}Grad} limit}, journal = {Comptes Rendus. Math\'ematique}, pages = {623--627}, publisher = {Elsevier}, volume = {353}, number = {7}, year = {2015}, doi = {10.1016/j.crma.2015.04.013}, language = {en}, }
TY - JOUR AU - Thierry Bodineau AU - Isabelle Gallagher AU - Laure Saint-Raymond TI - From hard spheres dynamics to the Stokes–Fourier equations: An $ {L}^{2}$ analysis of the Boltzmann–Grad limit JO - Comptes Rendus. Mathématique PY - 2015 SP - 623 EP - 627 VL - 353 IS - 7 PB - Elsevier DO - 10.1016/j.crma.2015.04.013 LA - en ID - CRMATH_2015__353_7_623_0 ER -
%0 Journal Article %A Thierry Bodineau %A Isabelle Gallagher %A Laure Saint-Raymond %T From hard spheres dynamics to the Stokes–Fourier equations: An $ {L}^{2}$ analysis of the Boltzmann–Grad limit %J Comptes Rendus. Mathématique %D 2015 %P 623-627 %V 353 %N 7 %I Elsevier %R 10.1016/j.crma.2015.04.013 %G en %F CRMATH_2015__353_7_623_0
Thierry Bodineau; Isabelle Gallagher; Laure Saint-Raymond. From hard spheres dynamics to the Stokes–Fourier equations: An $ {L}^{2}$ analysis of the Boltzmann–Grad limit. Comptes Rendus. Mathématique, Volume 353 (2015) no. 7, pp. 623-627. doi : 10.1016/j.crma.2015.04.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.04.013/
[1] Sur les limites asymptotiques de la théorie cinétique conduisant à la dynamique des fluides incompressibles, C. R. Acad. Sci. Paris, Ser. I, Volume 309 (1989) no. 11, pp. 727-732
[2] Equilibrium time correlation functions in the low density limit, J. Stat. Phys., Volume 22 (1980), pp. 237-257
[3] The Brownian motion as the limit of a deterministic system of hard-spheres, Invent. Math. (2015), pp. 1-61 (in press) | DOI
[4] T. Bodineau, I. Gallagher, L. Saint-Raymond, From hard spheres dynamics to the Stokes–Fourier equations: an analysis of the Boltzmann–Grad limit, in preparation.
[5] From Newton to Boltzmann: The Case of Hard-Spheres and Short-Range Potentials, Zurich Lectures in Advanced Mathematics, European Mathematical Society, Zürich, Switzerland, 2014
[6] Time evolution of large classical systems (J. Moser, ed.), Lecture Notes in Physics, vol. 38, Springer Verlag, 1975, pp. 1-111
Cited by Sources:
Comments - Policy