[Une démonstration simple de la valeur moyenne de
Let F be a finite field of odd cardinality q,
Soit F un corps fini de cardinalité impaire q,
Accepté le :
Publié le :
Julio Andrade 1, 2
@article{CRMATH_2015__353_8_677_0, author = {Julio Andrade}, title = {A simple proof of the mean value of $ |{K}_{2}(\mathcal{O})|$ in function fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {677--682}, publisher = {Elsevier}, volume = {353}, number = {8}, year = {2015}, doi = {10.1016/j.crma.2015.04.018}, language = {en}, }
Julio Andrade. A simple proof of the mean value of $ |{K}_{2}(\mathcal{O})|$ in function fields. Comptes Rendus. Mathématique, Volume 353 (2015) no. 8, pp. 677-682. doi : 10.1016/j.crma.2015.04.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.04.018/
[1] J.C. Andrade, Rudnick and Soundararajan's theorem for function fields, preprint, 2014.
[2] The mean value of
[3] Conjectures for the integral moments and ratios of L-functions over function fields, J. Number Theory, Volume 142 (2014), pp. 102-148
[4] Statistics of the zeros of zeta functions in families of hyperelliptic curves over a finite field, Compos. Math., Volume 146 (2010), pp. 81-101
[5] Eisenstein series of
[6] Average values of L-series in function fields, J. Reine Angew. Math., Volume 426 (1992), pp. 117-150
[7] Estimates for coefficients of L-functions for function fields, Finite Fields Appl., Volume 5 (1999), pp. 76-88
[8] On the mean value of
[9] On the cohomology and K-theory of the general linear group over a finite field, Ann. Math. (2), Volume 96 (1972), pp. 552-586
[10] Average value of
[11] Number Theory in Function Fields, Graduate Texts in Mathematics, vol. 210, Springer-Verlag, New York, 2002
[12] Symbols in arithmetic, International Congress of Mathematics, vol. 1, Gauthier-Villars, Paris, 1971, pp. 201-211
Cité par Sources :
Commentaires - Politique