Comptes Rendus
Number theory
A simple proof of the mean value of |K2(O)| in function fields
Comptes Rendus. Mathématique, Volume 353 (2015) no. 8, pp. 677-682.

Let F be a finite field of odd cardinality q, A=F[T] the polynomial ring over F, k=F(T) the rational function field over F and H the set of square-free monic polynomials in A of degree odd. If DH, we denote by OD the integral closure of A in k(D). In this Note, we give a simple proof for the average value of the size of the groups K2(OD) as D varies over the ensemble H and q is kept fixed. The proof is based on character sums estimates and on the use of the Riemann hypothesis for curves over finite fields.

Soit F un corps fini de cardinalité impaire q, A=F[T] l'anneau de polynômes sur F, k=F(T) le corps des fonctions rationnelles sur F et H l'ensemble des polynômes unitaires et sans facteur carré en A de degré impair. Si DH, on note par OD la clóture intégrale de A en k(D). Dans cette Note, nous donnons une preuve simple de la valeur moyenne de la taille des groupes K2(OD) quand D varie dans l'ensemble H et quand q est maintenu fixe. La preuve est basée sur des estimations des sommes de caractères et sur l'utilisation de l'hypothèse de Riemann pour les courbes sur les corps finis.

Published online:
DOI: 10.1016/j.crma.2015.04.018

Julio Andrade 1, 2

1 Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
2 Depto. Matematica, PUC-Rio, Rio De Janeiro, RJ, Brazil
     author = {Julio Andrade},
     title = {A simple proof of the mean value of $ |{K}_{2}(\mathcal{O})|$ in function fields},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {677--682},
     publisher = {Elsevier},
     volume = {353},
     number = {8},
     year = {2015},
     doi = {10.1016/j.crma.2015.04.018},
     language = {en},
AU  - Julio Andrade
TI  - A simple proof of the mean value of $ |{K}_{2}(\mathcal{O})|$ in function fields
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 677
EP  - 682
VL  - 353
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crma.2015.04.018
LA  - en
ID  - CRMATH_2015__353_8_677_0
ER  - 
%0 Journal Article
%A Julio Andrade
%T A simple proof of the mean value of $ |{K}_{2}(\mathcal{O})|$ in function fields
%J Comptes Rendus. Mathématique
%D 2015
%P 677-682
%V 353
%N 8
%I Elsevier
%R 10.1016/j.crma.2015.04.018
%G en
%F CRMATH_2015__353_8_677_0
Julio Andrade. A simple proof of the mean value of $ |{K}_{2}(\mathcal{O})|$ in function fields. Comptes Rendus. Mathématique, Volume 353 (2015) no. 8, pp. 677-682. doi : 10.1016/j.crma.2015.04.018.

[1] J.C. Andrade, Rudnick and Soundararajan's theorem for function fields, preprint, 2014.

[2] J.C. Andrade; J.P. Keating The mean value of L(12,χ) in the hyperelliptic ensemble, J. Number Theory, Volume 132 (2012), pp. 2793-2816

[3] J.C. Andrade; J.P. Keating Conjectures for the integral moments and ratios of L-functions over function fields, J. Number Theory, Volume 142 (2014), pp. 102-148

[4] D. Faifman; Z. Rudnick Statistics of the zeros of zeta functions in families of hyperelliptic curves over a finite field, Compos. Math., Volume 146 (2010), pp. 81-101

[5] D. Goldfeld; J. Hoffstein Eisenstein series of 12-integral weight and the mean value of real Dirichlet L-series, Invent. Math., Volume 80 (1985), pp. 185-208

[6] J. Hoffstein; M. Rosen Average values of L-series in function fields, J. Reine Angew. Math., Volume 426 (1992), pp. 117-150

[7] C. Hsu Estimates for coefficients of L-functions for function fields, Finite Fields Appl., Volume 5 (1999), pp. 76-88

[8] M. Jutila On the mean value of L(12,χ) for real characters, Analysis, Volume 1 (1981), pp. 149-161

[9] D. Quillen On the cohomology and K-theory of the general linear group over a finite field, Ann. Math. (2), Volume 96 (1972), pp. 552-586

[10] M. Rosen Average value of |K2(O)| in function fields, Finite Fields Appl., Volume 1 (1995), pp. 235-241

[11] M. Rosen Number Theory in Function Fields, Graduate Texts in Mathematics, vol. 210, Springer-Verlag, New York, 2002

[12] J. Tate Symbols in arithmetic, International Congress of Mathematics, vol. 1, Gauthier-Villars, Paris, 1971, pp. 201-211

Cited by Sources:

Comments - Policy