Comptes Rendus
Probability theory
The central limit theorem for complex Riesz–Raikov sums
[Le théorème limite central pour des sommes de Riesz–Raikov complexes]
Comptes Rendus. Mathématique, Volume 353 (2015) no. 8, pp. 749-753.

Nous démontrons un théorème limite central pour les sommes de Riesz–Raikov complexes. En application de nos méthodes, nous établissons aussi des résultats de discrépance pour les progressions géométriques complexes.

For complex Riesz–Raikov sums, the central limit theorem is proved. As a byproduct, metric discrepancy results are proved for complex geometric progressions.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.04.020
Katusi Fukuyama 1 ; Noriyuki Kuri 1

1 Department of Mathematics, Kobe University, Rokko, Kobe, 657-8501, Japan
@article{CRMATH_2015__353_8_749_0,
     author = {Katusi Fukuyama and Noriyuki Kuri},
     title = {The central limit theorem for complex {Riesz{\textendash}Raikov} sums},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {749--753},
     publisher = {Elsevier},
     volume = {353},
     number = {8},
     year = {2015},
     doi = {10.1016/j.crma.2015.04.020},
     language = {en},
}
TY  - JOUR
AU  - Katusi Fukuyama
AU  - Noriyuki Kuri
TI  - The central limit theorem for complex Riesz–Raikov sums
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 749
EP  - 753
VL  - 353
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crma.2015.04.020
LA  - en
ID  - CRMATH_2015__353_8_749_0
ER  - 
%0 Journal Article
%A Katusi Fukuyama
%A Noriyuki Kuri
%T The central limit theorem for complex Riesz–Raikov sums
%J Comptes Rendus. Mathématique
%D 2015
%P 749-753
%V 353
%N 8
%I Elsevier
%R 10.1016/j.crma.2015.04.020
%G en
%F CRMATH_2015__353_8_749_0
Katusi Fukuyama; Noriyuki Kuri. The central limit theorem for complex Riesz–Raikov sums. Comptes Rendus. Mathématique, Volume 353 (2015) no. 8, pp. 749-753. doi : 10.1016/j.crma.2015.04.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.04.020/

[1] C. Aistleitner On the law of the iterated logarithm for the discrepancy of lacunary sequences, Trans. Amer. Math. Soc., Volume 362 (2010), pp. 5967-5982

[2] I. Berkes On the asymptotic behaviour of f(nkx). I, II, Z. Wahrsch. verv. Geb., Volume 34 (1976), pp. 319-345 (pp. 347–365)

[3] J.-P. Conze; S. Le Borgne; M. Roger Central limit theorem for stationary products of toral automorphisms, Discrete Contin. Dyn. Syst., Volume 32 (2012), pp. 1597-1626

[4] K. Fukuyama The central limit theorem for Riesz–Raikov sums, Probab. Theory Relat. Fields, Volume 100 (1994), pp. 57-75

[5] K. Fukuyama The law of the iterated logarithm for discrepancies of {θnx}, Acta Math. Hung., Volume 118 (2008), pp. 155-170

[6] K. Fukuyama A central limit theorem and a metric discrepancy result for sequence with bounded gaps, Dependence in Probability, Analysis and Number Theory, Kendrick Press, Heber City, UT, USA, 2010, pp. 233-246

[7] K. Fukuyama; Y. Mitsuhata Bounded law of the iterated logarithm for discrepancies of permutations of lacunary sequences, Summer School on the Theory of Uniform Distribution, RIMS Kôkyûroku Bessatsu, vol. B29, 2012, pp. 45-88

[8] M. Kac On the distribution of values of sums of type f(2kt), Ann. Math., Volume 47 (1946), pp. 33-49

[9] J. Komlós; P. Révész Remark to a paper of Gaposhkin, Acta Sci. Math. (Szeged), Volume 33 (1972), pp. 237-241

[10] V.P. Leonov Some Applications of Higher Semi-Invariants to the Theory of Stationary Random Processes, Izdat. Nauka, Moscow, 1964 (67 p)

[11] T. Löbbe Limit theorems for multivariate lacunary systems, 2014 (preprint) | arXiv

[12] D. Monrad; W. Philipp Nearby variables with nearby conditional laws and a strong approximation theorem for Hilbert space valued martingales, Probab. Theory Relat. Fields, Volume 88 (1991), pp. 381-404

[13] F. Móricz On the convergence properties of weakly multiplicative systems, Acta Sci. Math. Szeged, Volume 38 (1976), pp. 127-144

[14] B. Petit Le théorème limite central pour des sommes de Riesz–Raikov, Probab. Theory Relat. Fields, Volume 93 (1992), pp. 407-438

[15] W. Philipp A functional law of the iterated logarithm for empirical distribution functions of weakly dependent random variables, Ann. Probab., Volume 5 (1977), pp. 319-350

[16] S. Zaremba Some applications of multidimensional integration by parts, Ann. Pol. Math., Volume 21 (1968), pp. 85-96

Cité par Sources :

Commentaires - Politique