In this Note, we consider the internal null-controllability of the N-dimensional heat equation on domains of the form , with and a smooth domain of . When the control is exerted on , with an algebraic real number of order and a non-empty open subset, we show the null-controllability, for all time . This result is obtained through the Lebeau–Robbiano strategy and requires an upper bound of the cost of the one-dimensional null-control.
Dans cette note, on considère la contrôlabilité à zéro interne de l'équation de la chaleur N-dimensionnelle, sur des domaines de la forme , avec et un domaine borné et régulier de . Lorsque le contrôle est exercé sur , avec un nombre réel algébrique de degré et un ouvert non vide, on montre la contrôlabilité à zéro, en tout temps . Ce résultat s'appuie sur la stratégie de Lebeau–Robbiano et exige une estimation du coût du contrôle monodimensionnel.
Accepted:
Published online:
El Hadji Samb 1
@article{CRMATH_2015__353_10_925_0, author = {El Hadji Samb}, title = {Internal null-controllability of the {\protect\emph{N}-dimensional} heat equation in cylindrical domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {925--930}, publisher = {Elsevier}, volume = {353}, number = {10}, year = {2015}, doi = {10.1016/j.crma.2015.04.021}, language = {en}, }
El Hadji Samb. Internal null-controllability of the N-dimensional heat equation in cylindrical domains. Comptes Rendus. Mathématique, Volume 353 (2015) no. 10, pp. 925-930. doi : 10.1016/j.crma.2015.04.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.04.021/
[1] Sharp estimates of the one-dimensional boundary control cost for parabolic systems and application to the N-dimensional boundary null-controllability in cylindrical domains, SIAM J. Control Optim., Volume 52 (2014) no. 5, pp. 2970-3001
[2] Observability for the one-dimensional heat equation, Stud. Math., Volume 48 (1973), pp. 291-305
[3] Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Ration. Mech. Anal., Volume 43 (1971), pp. 272-292
[4] Contrôle exact de l'équation de la chaleur, Commun. Partial Differ. Equ., Volume 20 (1995) no. 1–2, pp. 335-356
[5] Entire functions and Müntz–Szasz type approximation, Trans. Amer. Math. Soc., Volume 157 (1971), pp. 23-37
[6] Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time, J. Differ. Equ., Volume 204 (2004) no. 1, pp. 202-226
[7] Théorie générale des séries de Dirichlet, Mém. Math., Volume 17 (1926), p. 3
Cited by Sources:
Comments - Policy