Comptes Rendus
Geometry
The lower and upper bounds of the first eigenvalues for the bi-harmonic operator on manifolds
[Bornes inférieures et supérieures des premières valeurs propres de l'opérateur bi-harmonique sur une variété]
Comptes Rendus. Mathématique, Volume 353 (2015) no. 8, pp. 735-740.

Dans cette Note, nous donnons des minorants et majorants des premières valeurs propres de l'opérateur bi-harmonique sur une variété riemannienne, compacte, connexe, en utilisant respectivement les formules de Reilly et de Bochner.

In this paper, we will estimate the lower bounds and upper bounds of the first eigenvalues for bi-harmonic operators on manifolds through Reilly's and Bochner's formulae, respectively.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.06.001
Liuwei Zhang 1

1 Department of Mathematics, Tongji University, Shanghai, 200092, PR China
@article{CRMATH_2015__353_8_735_0,
     author = {Liuwei Zhang},
     title = {The lower and upper bounds of the first eigenvalues for the bi-harmonic operator on manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {735--740},
     publisher = {Elsevier},
     volume = {353},
     number = {8},
     year = {2015},
     doi = {10.1016/j.crma.2015.06.001},
     language = {en},
}
TY  - JOUR
AU  - Liuwei Zhang
TI  - The lower and upper bounds of the first eigenvalues for the bi-harmonic operator on manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 735
EP  - 740
VL  - 353
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crma.2015.06.001
LA  - en
ID  - CRMATH_2015__353_8_735_0
ER  - 
%0 Journal Article
%A Liuwei Zhang
%T The lower and upper bounds of the first eigenvalues for the bi-harmonic operator on manifolds
%J Comptes Rendus. Mathématique
%D 2015
%P 735-740
%V 353
%N 8
%I Elsevier
%R 10.1016/j.crma.2015.06.001
%G en
%F CRMATH_2015__353_8_735_0
Liuwei Zhang. The lower and upper bounds of the first eigenvalues for the bi-harmonic operator on manifolds. Comptes Rendus. Mathématique, Volume 353 (2015) no. 8, pp. 735-740. doi : 10.1016/j.crma.2015.06.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.06.001/

[1] I. Chavel Isoperimetric Inequalities, Cambridge Tracts in Math., vol. 145, Cambridge University Press, Cambridge, UK, 2001

[2] D.G. Chen; Q.M. Cheng; Q.L. Wang; C.Y. Xia On eigenvalues of a system of elliptic equations and biharmonic operator, J. Math. Anal. Appl., Volume 387 (2012), pp. 1146-1159

[3] H. Federer; W.H. Fleming Normal integral currents, Ann. Math., Volume 72 (1960), pp. 458-520

[4] H.A. Levine; M.H. Protter Unrestricted lower bounds for eigenvalues for classes of elliptic equations and systems of equations with applications to problems in elasticity, Math. Methods Appl. Sci., Volume 7 (1985) no. 2, pp. 210-222

[5] P. Li; S.T. Yau On the Schrödinger equations and the eigenvalue problem, Commun. Math. Phys., Volume 88 (1983), pp. 309-318

[6] V.G. Maz'ya Classes of domains and embedding theorems for functional spaces, Dokl. Akad. Nauk SSSR, Volume 133 (1960), pp. 527-530 (in Russian). Engl. transl.: Soviet Math. Dokl., 1, 1961, pp. 882-888

[7] R. Reilly Applications of the Hessian operator in a Riemannian manifold, Indiana Univ. Math. J., Volume 26 (1977), pp. 459-472

[8] S. Wei; M. Zhu Sharp isoperimetric inequalities and sphere theorems, Pac. J. Math., Volume 220 (2005) no. 1, pp. 183-195

Cité par Sources :

This work is supported by the National Natural Science Foundation of China (No. 11201400).

Commentaires - Politique