Comptes Rendus
Partial differential equations/Calculus of variations
Global continuity of solutions to quasilinear equations with Morrey data
Comptes Rendus. Mathématique, Volume 353 (2015) no. 8, pp. 717-721.

We announce some recent results on boundedness and Hölder continuity up to the boundary for the weak solutions to coercive quasilinear equations with data belonging to Morrey spaces.

Nous annonçons quelques résultats récents sur la régularité höldérienne globale pour les solutions faibles d'équations coercitives quasi linéaires avec des données appartenant à des espaces de Morrey.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2015.06.003

Sun-Sig Byun 1; Dian K. Palagachev 2; Pilsoo Shin 1

1 Seoul National University, Department of Mathematics, Seoul 151-747, Republic of Korea
2 Politecnico di Bari, DMMM, Via Edoardo Orabona 4, 70125 Bari, Italy
@article{CRMATH_2015__353_8_717_0,
     author = {Sun-Sig Byun and Dian K. Palagachev and Pilsoo Shin},
     title = {Global continuity of solutions to quasilinear equations with {Morrey} data},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {717--721},
     publisher = {Elsevier},
     volume = {353},
     number = {8},
     year = {2015},
     doi = {10.1016/j.crma.2015.06.003},
     language = {en},
}
TY  - JOUR
AU  - Sun-Sig Byun
AU  - Dian K. Palagachev
AU  - Pilsoo Shin
TI  - Global continuity of solutions to quasilinear equations with Morrey data
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 717
EP  - 721
VL  - 353
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crma.2015.06.003
LA  - en
ID  - CRMATH_2015__353_8_717_0
ER  - 
%0 Journal Article
%A Sun-Sig Byun
%A Dian K. Palagachev
%A Pilsoo Shin
%T Global continuity of solutions to quasilinear equations with Morrey data
%J Comptes Rendus. Mathématique
%D 2015
%P 717-721
%V 353
%N 8
%I Elsevier
%R 10.1016/j.crma.2015.06.003
%G en
%F CRMATH_2015__353_8_717_0
Sun-Sig Byun; Dian K. Palagachev; Pilsoo Shin. Global continuity of solutions to quasilinear equations with Morrey data. Comptes Rendus. Mathématique, Volume 353 (2015) no. 8, pp. 717-721. doi : 10.1016/j.crma.2015.06.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.06.003/

[1] D.R. Adams Traces of potentials arising from translation invariant operators, Ann. Sc. Norm. Super. Pisa (3), Volume 25 (1971), pp. 203-217

[2] S.-S. Byun; D.K. Palagachev Boundedness of the weak solutions to quasilinear elliptic equations with Morrey data, Indiana Univ. Math. J., Volume 62 (2013), pp. 1565-1585

[3] S.-S. Byun; D.K. Palagachev; P. Shin Global Hölder continuity of solutions to quasilinear equations with Morrey data, 2015 | arXiv

[4] E. De Giorgi Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Nat. (3) (1957), pp. 25-43

[5] R. Gariepy; W.P. Ziemer A regularity condition at the boundary for solutions of quasilinear elliptic equations, Arch. Ration. Mech. Anal., Volume 67 (1977), pp. 25-39

[6] Ph. Hartman; G. Stampacchia On some non-linear elliptic differential-functional equations, Acta Math., Volume 115 (1966), pp. 271-310

[7] O.A. Ladyzhenskaya; N.N. Ural'tseva Linear and Quasilinear Equations of Elliptic Type, Nauka, Moscow, 1973 (in Russian)

[8] J.L. Lewis Uniformly fat sets, Trans. Amer. Math. Soc., Volume 308 (1988), pp. 177-196

[9] H. Lewy; G. Stampacchia On the smoothness of superharmonics which solve a minimum problem, J. Anal. Math., Volume 23 (1970), pp. 227-236

[10] G.M. Lieberman Sharp forms of estimates for subsolutions and supersolutions of quasilinear elliptic equations involving measures, Commun. Partial Differ. Equ., Volume 18 (1993), pp. 1191-1212

[11] C.B. Morrey Second order elliptic equations in several variables and Hölder continuity, Math. Z., Volume 72 (1959–1960), pp. 146-164

[12] L.C. Piccinini Inclusioni tra spazi di Morrey, Boll. Unione Mat. Ital. (4), Volume 2 (1969), pp. 95-99

[13] J. Serrin Local behavior of solutions of quasi-linear equations, Acta Math., Volume 111 (1964), pp. 247-302

[14] G. Stampacchia Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), Volume 15 (1965), pp. 189-258

[15] N.S. Trudinger On Harnack type inequalities and their application to quasilinear elliptic equations, Commun. Pure Appl. Math., Volume 20 (1967), pp. 721-747

Cited by Sources:

Comments - Policy