We study perturbations of functions of noncommuting self-adjoint operators A and B that can be defined in terms of double operator integrals. We prove that if f belongs to the Besov class , then we have the following Lipschitz-type estimate in the Schatten–von Neumann norm , : . However, the condition does not imply the Lipschitz-type estimate in with . The main tool is Schatten–von Neumann norm estimates for triple operator integrals.
Nous examinons les perturbations de fonctions d'opérateurs auto-adjoints A et B qui ne commutent pas. De telles fonctions peuvent être définies en termes d'intégrales doubles opératorielles. Pour f dans l'espace de Besov , nous obtenons l'estimation lipschitzienne en norme de Schatten–von Neumann , : . Par ailleurs, la condition n'implique pas l'estimation lipschitzienne en norme de pour . L'outil principal consiste en l'estimation d'intégrales triples opératorielles dans les normes de .
Accepted:
Published online:
Aleksei Aleksandrov 1; Fedor Nazarov 2; Vladimir Peller 3
@article{CRMATH_2015__353_8_723_0, author = {Aleksei Aleksandrov and Fedor Nazarov and Vladimir Peller}, title = {Triple operator integrals in {Schatten{\textendash}von} {Neumann} norms and functions of perturbed noncommuting operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {723--728}, publisher = {Elsevier}, volume = {353}, number = {8}, year = {2015}, doi = {10.1016/j.crma.2015.05.005}, language = {en}, }
TY - JOUR AU - Aleksei Aleksandrov AU - Fedor Nazarov AU - Vladimir Peller TI - Triple operator integrals in Schatten–von Neumann norms and functions of perturbed noncommuting operators JO - Comptes Rendus. Mathématique PY - 2015 SP - 723 EP - 728 VL - 353 IS - 8 PB - Elsevier DO - 10.1016/j.crma.2015.05.005 LA - en ID - CRMATH_2015__353_8_723_0 ER -
%0 Journal Article %A Aleksei Aleksandrov %A Fedor Nazarov %A Vladimir Peller %T Triple operator integrals in Schatten–von Neumann norms and functions of perturbed noncommuting operators %J Comptes Rendus. Mathématique %D 2015 %P 723-728 %V 353 %N 8 %I Elsevier %R 10.1016/j.crma.2015.05.005 %G en %F CRMATH_2015__353_8_723_0
Aleksei Aleksandrov; Fedor Nazarov; Vladimir Peller. Triple operator integrals in Schatten–von Neumann norms and functions of perturbed noncommuting operators. Comptes Rendus. Mathématique, Volume 353 (2015) no. 8, pp. 723-728. doi : 10.1016/j.crma.2015.05.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.05.005/
[1] Operator Hölder–Zygmund functions, Adv. Math., Volume 224 (2010), pp. 910-966
[2] Functions of normal operators under perturbations, Adv. Math., Volume 226 (2011), pp. 5216-5251
[3] Functions of perturbed noncommuting self-adjoint operators, C. R. Acad. Sci. Paris, Ser. I, Volume 353 (2015), pp. 209-214
[4] Interpolation Spaces, Springer-Verlag, Berlin, 1976
[5] Double Stieltjes operator integrals, Probl. Math. Phys., Leningrad. Univ., Volume 1 (1966), pp. 33-67 (in Russian). English transl.: Top. Math. Phys. 1 (1967) 25–54, Consultants Bureau Plenum Publishing Corporation, New York
[6] The connection of the Kantorovich–Rubinshtein metric for spectral resolutions of selfadjoint operators with functions of operators, Vestn. Leningr. Univ., Math., Volume 19 (1968), pp. 94-97 (in Russian)
[7] Multidimensional operator multipliers, Trans. Amer. Math. Soc., Volume 361 (2009), pp. 4683-4720
[8] Functions of n-tuples of commuting self-adjoint operators, J. Funct. Anal., Volume 266 (2014), pp. 5398-5428
[9] New Thoughts on Besov Spaces, Duke University Press, Durham, NC, USA, 1976
[10] Hankel operators in the theory of perturbations of unitary and self-adjoint operators, Funkc. Anal. Prilozh., Volume 19 (1985) no. 2, pp. 37-51 (in Russian). English transl.: Funct. Anal. Appl. 19 (1985) 111–123
[11] Hankel operators in the perturbation theory of unbounded self-adjoint operators, Analysis and Partial Differential Equations, Lecture Notes Pure Appl. Math., vol. 122, Dekker, New York, 1990, pp. 529-544
[12] Hankel Operators and Their Applications, Springer-Verlag, New York, 2003
[13] Multiple operator integrals and higher operator derivatives, J. Funct. Anal., Volume 233 (2006), pp. 515-544
[14] Introduction to Operator Space Theory, London Math. Soc. Lecture Notes Ser., vol. 294, Cambridge University Press, Cambridge, UK, 2003
Cited by Sources:
Comments - Policy