Comptes Rendus
Homological algebra/Group theory
A refinement of a conjecture of Quillen
Comptes Rendus. Mathématique, Volume 353 (2015) no. 9, pp. 779-784.

We present some new results on the cohomology of a large scope of SL2 groups in degrees above the virtual cohomological dimension, yielding some partial positive results for the Quillen conjecture in rank one. We combine these results with the known partial positive results and the known types of counterexamples to the Quillen conjecture, in order to formulate a refined variant of the conjecture.

Nous présentons de nouveaux résultats sur la cohomologie d'un grand échantillon de groupes SL2, en degrés au-dessus de la dimension cohomologique virtuelle. Ceci donne quelques résultats affirmatifs de caractère partiel pour la conjecture de Quillen en rang 1. Nous combinons ces résultats avec les résultats connus affirmant une partie de la conjecture de Quillen et avec les types connus de contre-exemples à cette conjecture, afin de formuler une variante raffinée de cette dernière.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2015.03.022

Alexander D. Rahm 1; Matthias Wendt 2

1 Department of Mathematics, National University of Ireland at Galway, Ireland
2 Fakultät Mathematik, Universität Duisburg-Essen, Thea-Leymann-Strasse 9, Essen, Germany
@article{CRMATH_2015__353_9_779_0,
     author = {Alexander D. Rahm and Matthias Wendt},
     title = {A refinement of a conjecture of {Quillen}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {779--784},
     publisher = {Elsevier},
     volume = {353},
     number = {9},
     year = {2015},
     doi = {10.1016/j.crma.2015.03.022},
     language = {en},
}
TY  - JOUR
AU  - Alexander D. Rahm
AU  - Matthias Wendt
TI  - A refinement of a conjecture of Quillen
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 779
EP  - 784
VL  - 353
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2015.03.022
LA  - en
ID  - CRMATH_2015__353_9_779_0
ER  - 
%0 Journal Article
%A Alexander D. Rahm
%A Matthias Wendt
%T A refinement of a conjecture of Quillen
%J Comptes Rendus. Mathématique
%D 2015
%P 779-784
%V 353
%N 9
%I Elsevier
%R 10.1016/j.crma.2015.03.022
%G en
%F CRMATH_2015__353_9_779_0
Alexander D. Rahm; Matthias Wendt. A refinement of a conjecture of Quillen. Comptes Rendus. Mathématique, Volume 353 (2015) no. 9, pp. 779-784. doi : 10.1016/j.crma.2015.03.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.03.022/

[1] F. Altunbulak Aksu; D.J. Green Essential cohomology for elementary Abelian p-groups, J. Pure Appl. Algebra, Volume 213 (2009), pp. 2238-2243

[2] M.F. Anton On a conjecture of Quillen at the prime 3, J. Pure Appl. Algebra, Volume 144 (1999) no. 1, pp. 1-20

[3] W.G. Dwyer Exotic cohomology for GLn(Z[1/2]), Proc. Amer. Math. Soc., Volume 126 (1998) no. 7, pp. 2159-2167

[4] H.-W. Henn The cohomology of SL(3,Z[1/2]), K-Theory, Volume 16 (1999) no. 4, pp. 299-359

[5] H.-W. Henn; J. Lannes Exotic classes in the mod 2 cohomology of GLn(Z[1/2]), Enseign. Math., Volume 54 (2008), pp. 107-108

[6] H.-W. Henn; J. Lannes; L. Schwartz Localization of unstable A-modules and equivariant mod p cohomology, Math. Ann., Volume 301 (1995), pp. 23-68

[7] K. Hutchinson On the low-dimensional homology of SL2(k[t,t1]), J. Algebra, Volume 425 (2015), pp. 324-366 | DOI

[8] K.P. Knudson Homology of Linear Groups, Progress in Mathematics, vol. 193, Birkhäuser Verlag, Basel, Switzerland, 2001

[9] S.A. Mitchell On the plus construction for BGL(Z[1/2]) at the prime 2, Math. Z., Volume 209 (1992) no. 2, pp. 205-222

[10] D. Quillen; D. Quillen The spectrum of an equivariant cohomology ring. II, Ann. of Math. (2), Volume 94 (1971), pp. 549-572

[11] A.D. Rahm; M. Wendt On Farrell–Tate cohomology of SL2 over S-integers (Preprint) | arXiv | HAL

[12] J.-P. Serre Sous-groupes finis des groupes de Lie, Séminaire Bourbaki, vol. 864, 1999

[13] M. Wendt Homology of SL2 over function fields I: parabolic subcomplexes, to appear in J. Reine Angew. Math. (Crelle J.) (Preprint) | arXiv

[14] M. Wendt, Homology of SL2 over function fields II: rational function fields, in preparation.

Cited by Sources:

Comments - Policy