[A nonlinear Korn inequality in , ]
Let Ω be a bounded and connected open subset of that satisfies the uniform interior cone property and let . We establish a nonlinear Korn inequality in , which provides an upper bound of the -norm of the difference between two immersions and in terms of the -norm of the difference between their associated metric tensors and .
Second, let Ω be a bounded, simply-connected, open subset of with a Lipschitz boundary, the set Ω being locally on the same side of its boundary. Using the above nonlinear Korn inequality in , we establish the local Lipschitz-continuity of the mapping , which is well-defined when the components of the Riemann curvature tensor associated with C vanish in , the immersion being the solution, unique up to an isometry of , of the equation in Ω.
Soit Ω un ouvert borné connexe de satisfaisant la propriété du cône intérieur uniforme et soit . On établit une inégalité de Korn non linéaire dans , qui fournit une borne supérieure de la norme de la différence entre deux immersions et en fonction de la norme de la différence entre leurs tenseurs métriques associés et .
Soit ensuite Ω un ouvert borné simplement connexe de à frontière lipschitzienne, l'ensemble Ω étant situé localement d'un seul côté de sa frontière. Utilisant l'inégalité de Korn non linéaire dans ci-dessus, on établit la Lipschitz-continuité locale de l'application , qui est bien définie lorsque les composantes du tenseur de courbure de Riemann associé à C s'annulent dans , l'immersion étant la solution, unique à une isométrie de près, de l'équation dans Ω.
Accepted:
Published online:
Philippe G. Ciarlet 1; Sorin Mardare 2
@article{CRMATH_2015__353_10_905_0, author = {Philippe G. Ciarlet and Sorin Mardare}, title = {Une in\'egalit\'e de {Korn} non lin\'eaire dans $ {W}^{2,p}$, $ p>n$}, journal = {Comptes Rendus. Math\'ematique}, pages = {905--911}, publisher = {Elsevier}, volume = {353}, number = {10}, year = {2015}, doi = {10.1016/j.crma.2015.07.009}, language = {fr}, }
Philippe G. Ciarlet; Sorin Mardare. Une inégalité de Korn non linéaire dans $ {W}^{2,p}$, $ p>n$. Comptes Rendus. Mathématique, Volume 353 (2015) no. 10, pp. 905-911. doi : 10.1016/j.crma.2015.07.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.07.009/
[1] Manifolds, Tensor Analysis, and Applications, Springer, New York, 1985
[2] Sobolev Spaces, Academic Press, New York, 1975
[3] Continuity of a deformation in as a function of its Cauchy–Green tensor in , J. Nonlinear Sci., Volume 14 (2004), pp. 415-427
[4] Inégalités de Korn non linéaires dans , avec ou sans conditions aux limites, C. R. Acad. Sci. Paris, Ser. I, Volume 353 (2015) no. 6, pp. 563-568
[5] Nonlinear Korn inequalities, J. Math. Pures Appl. (2015) (à paraître) | DOI
[6] Recovery of immersions from their metric tensors and nonlinear Korn inequalities: a brief survey, Chin. Ann. Math. Ser. B (2015) (à paraître)
[7] P.G. Ciarlet, S. Mardare, Immersions in , as functions of their metric tensors in , in preparation.
[8] Low-energy deformations of thin elastic plates: isometric embeddings and branching patterns, Universität Leipzig, Allemagne, 2004 (Habilitationsschrift)
[9] Mathematical Analysis and Numerical Methods for Science and Technology, Volume 2: Functional and Variational Methods, Springer, 2000
[10] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Commun. Pure Appl. Math., Volume 55 (2002), pp. 1461-1506
[11] Rotation and strain, Commun. Pure Appl. Math., Volume 14 (1961), pp. 391-413
[12] Bounds for deformations in terms of average strains (O. Shisha, ed.), Inequalities III, Academic Press, New York, 1972, pp. 129-144
[13] New integral estimates for deformations in terms of their nonlinear strains, Arch. Ration. Mech. Anal., Volume 78 (1982), pp. 131-172
[14] On isometric immersions of a Riemannian space with little regularity, Anal. Appl., Volume 2 (2004), pp. 193-226
[15] On systems of first order linear partial differential equations with coefficients, Adv. Differ. Equ., Volume 12 (2007), pp. 301-360
[16] Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967
Cited by Sources:
Comments - Policy