We study the real valued process defined by , where the are bounded. We aim at proving the decay of correlations for this model, under regularity assumptions on the transformation φ.
On étudie le processus réel défini par , les étant bornés. Sous des hypothèses de régularité sur la transformation φ, on établit la décroissance des corrélations pour ce modèle.
Accepted:
Published online:
Lisette Jager 1; Jules Maes 1; Alain Ninet 1
@article{CRMATH_2015__353_11_1041_0, author = {Lisette Jager and Jules Maes and Alain Ninet}, title = {Exponential decay of correlations for a real-valued dynamical system embedded in $ {\mathbb{R}}^{2}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {1041--1045}, publisher = {Elsevier}, volume = {353}, number = {11}, year = {2015}, doi = {10.1016/j.crma.2015.07.015}, language = {en}, }
TY - JOUR AU - Lisette Jager AU - Jules Maes AU - Alain Ninet TI - Exponential decay of correlations for a real-valued dynamical system embedded in $ {\mathbb{R}}^{2}$ JO - Comptes Rendus. Mathématique PY - 2015 SP - 1041 EP - 1045 VL - 353 IS - 11 PB - Elsevier DO - 10.1016/j.crma.2015.07.015 LA - en ID - CRMATH_2015__353_11_1041_0 ER -
%0 Journal Article %A Lisette Jager %A Jules Maes %A Alain Ninet %T Exponential decay of correlations for a real-valued dynamical system embedded in $ {\mathbb{R}}^{2}$ %J Comptes Rendus. Mathématique %D 2015 %P 1041-1045 %V 353 %N 11 %I Elsevier %R 10.1016/j.crma.2015.07.015 %G en %F CRMATH_2015__353_11_1041_0
Lisette Jager; Jules Maes; Alain Ninet. Exponential decay of correlations for a real-valued dynamical system embedded in $ {\mathbb{R}}^{2}$. Comptes Rendus. Mathématique, Volume 353 (2015) no. 11, pp. 1041-1045. doi : 10.1016/j.crma.2015.07.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.07.015/
[1] From rates of mixing to recurrence times via large deviations, Adv. Math., Volume 228 (2011) no. 2, pp. 1203-1236
[2] Concepts and Results in Chaotic Dynamics: A Short Course, Theoretical and Mathematical Physics, Springer-Verlag, Berlin, 2006
[3] Ergodic properties of invariant measures for piecewise monotonic transformations, Math. Z., Volume 180 (1982), pp. 119-140
[4] Théorie ergodique pour des classes d'opérations non complètement continues, Ann. of Math. (2), Volume 52 (1950), pp. 140-147
[5] Chaos, Fractals and Noise: Stochastic Aspects of Dynamics, Springer Verlag, New York, 1998
[6] Multidimensional expanding maps with singularities: a pedestrian approach, Ergod. Theory Dyn. Syst., Volume 33 (2013) no. 1, pp. 168-182
[7] Absolutely continuous invariant measures for multidimensional expanding maps, Isr. J. Math., Volume 116 (2000), pp. 223-248
[8] Nonlinear Time Series: A Dynamical System Approach (with an appendix by K.S. Chan), Oxford Statistical Science Series, vol. 6, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1990
[9] Nonlinear time series analysis since 1990: some personal reflections, Acta Math. Appl. Sin. Engl. Ser., Volume 18 (2002) no. 2, pp. 177-184
[10] Recurrence times and rates of mixing, Isr. J. Math., Volume 110 (1999), pp. 153-188
Cited by Sources:
Comments - Policy