We study the real valued process defined by , where the are bounded. We aim at proving the decay of correlations for this model, under regularity assumptions on the transformation φ.
On étudie le processus réel défini par , les étant bornés. Sous des hypothèses de régularité sur la transformation φ, on établit la décroissance des corrélations pour ce modèle.
Accepted:
Published online:
Lisette Jager 1; Jules Maes 1; Alain Ninet 1
@article{CRMATH_2015__353_11_1041_0,
author = {Lisette Jager and Jules Maes and Alain Ninet},
title = {Exponential decay of correlations for a real-valued dynamical system embedded in $ {\mathbb{R}}^{2}$},
journal = {Comptes Rendus. Math\'ematique},
pages = {1041--1045},
year = {2015},
publisher = {Elsevier},
volume = {353},
number = {11},
doi = {10.1016/j.crma.2015.07.015},
language = {en},
}
TY - JOUR
AU - Lisette Jager
AU - Jules Maes
AU - Alain Ninet
TI - Exponential decay of correlations for a real-valued dynamical system embedded in $ {\mathbb{R}}^{2}$
JO - Comptes Rendus. Mathématique
PY - 2015
SP - 1041
EP - 1045
VL - 353
IS - 11
PB - Elsevier
DO - 10.1016/j.crma.2015.07.015
LA - en
ID - CRMATH_2015__353_11_1041_0
ER -
%0 Journal Article
%A Lisette Jager
%A Jules Maes
%A Alain Ninet
%T Exponential decay of correlations for a real-valued dynamical system embedded in $ {\mathbb{R}}^{2}$
%J Comptes Rendus. Mathématique
%D 2015
%P 1041-1045
%V 353
%N 11
%I Elsevier
%R 10.1016/j.crma.2015.07.015
%G en
%F CRMATH_2015__353_11_1041_0
Lisette Jager; Jules Maes; Alain Ninet. Exponential decay of correlations for a real-valued dynamical system embedded in $ {\mathbb{R}}^{2}$. Comptes Rendus. Mathématique, Volume 353 (2015) no. 11, pp. 1041-1045. doi: 10.1016/j.crma.2015.07.015
[1] From rates of mixing to recurrence times via large deviations, Adv. Math., Volume 228 (2011) no. 2, pp. 1203-1236
[2] Concepts and Results in Chaotic Dynamics: A Short Course, Theoretical and Mathematical Physics, Springer-Verlag, Berlin, 2006
[3] Ergodic properties of invariant measures for piecewise monotonic transformations, Math. Z., Volume 180 (1982), pp. 119-140
[4] Théorie ergodique pour des classes d'opérations non complètement continues, Ann. of Math. (2), Volume 52 (1950), pp. 140-147
[5] Chaos, Fractals and Noise: Stochastic Aspects of Dynamics, Springer Verlag, New York, 1998
[6] Multidimensional expanding maps with singularities: a pedestrian approach, Ergod. Theory Dyn. Syst., Volume 33 (2013) no. 1, pp. 168-182
[7] Absolutely continuous invariant measures for multidimensional expanding maps, Isr. J. Math., Volume 116 (2000), pp. 223-248
[8] Nonlinear Time Series: A Dynamical System Approach (with an appendix by K.S. Chan), Oxford Statistical Science Series, vol. 6, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1990
[9] Nonlinear time series analysis since 1990: some personal reflections, Acta Math. Appl. Sin. Engl. Ser., Volume 18 (2002) no. 2, pp. 177-184
[10] Recurrence times and rates of mixing, Isr. J. Math., Volume 110 (1999), pp. 153-188
Cited by Sources:
Comments - Policy
