Let be the polynomial algebra over the prime field of two elements, , in k variables , each of degree 1. We are interested in the Peterson hit problem of finding a minimal set of generators for as a module over the mod-2 Steenrod algebra, . In this paper, we study the hit problem in degree , with d a positive integer. Our result implies the one of Mothebe [4,5].
Soient l'algèbre de Steenrod mod-2 et l'algèbre polynomiale graduée à k générateurs sur le corps à deux éléments , chaque générateur étant de degré 1. Nous étudions le problème suivant soulevé par F. Peterson : déterminer un système minimal de générateurs comme module sur l'algèbre de Steenrod pour , problème appelé hit problem en anglais. Dans ce but, nous étudions le hit problem en degré , avec . Cette solution implique un résultat de Mothebe [4,5].
Accepted:
Published online:
Đặng Võ Phúc 1; Nguyễn Sum 1
@article{CRMATH_2015__353_11_1035_0, author = {{\DJ}ặng V\~o Ph\'uc and Nguyễn Sum}, title = {On the generators of the polynomial algebra as a module over the {Steenrod} algebra}, journal = {Comptes Rendus. Math\'ematique}, pages = {1035--1040}, publisher = {Elsevier}, volume = {353}, number = {11}, year = {2015}, doi = {10.1016/j.crma.2015.09.002}, language = {en}, }
TY - JOUR AU - Đặng Võ Phúc AU - Nguyễn Sum TI - On the generators of the polynomial algebra as a module over the Steenrod algebra JO - Comptes Rendus. Mathématique PY - 2015 SP - 1035 EP - 1040 VL - 353 IS - 11 PB - Elsevier DO - 10.1016/j.crma.2015.09.002 LA - en ID - CRMATH_2015__353_11_1035_0 ER -
Đặng Võ Phúc; Nguyễn Sum. On the generators of the polynomial algebra as a module over the Steenrod algebra. Comptes Rendus. Mathématique, Volume 353 (2015) no. 11, pp. 1035-1040. doi : 10.1016/j.crma.2015.09.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.09.002/
[1] The boundedness conjecture for the action of the Steenrod algebra on polynomials, Manchester, 1990 (N. Ray; G. Walker, eds.) (Lond. Math. Soc. Lect. Note Ser.), Volume vol. 176, Cambridge University Press, Cambridge (1992), pp. 203-216 (MR1232207)
[2] Representations of the homology of BV and the Steenrod algebra II, Sant Feliu de Guíxols, 1994 (Prog. Math.), Volume vol. 136, Birkhäuser Verlag, Basel, Switzerland (1996), pp. 143-154 (MR1397726)
[3] Products of projective spaces as Steenrod modules, The Johns Hopkins University, ProQuest LLC, Ann Arbor, MI, 1990 (PhD thesis 29 p., MR2638633)
[4] Generators of the polynomial algebra as a module over the Steenrod algebra, The University of Manchester, UK, 1997 (PhD thesis)
[5] Dimension result for the polynomial algebra as a module over the Steenrod algebra, Int. J. Math. Math. Sci. (2013) (MR3144989)
[6] -générateurs génériques pour l'algèbre polynomiale, Adv. Math., Volume 186 (2004), pp. 334-362 (MR2073910)
[7] Generators of as a module over the Steenrod algebra, Abstr. Amer. Math. Soc., Volume 833 (April 1987), pp. 55-89
[8] On characterizing summands in the classifying space of a group, I, Amer. J. Math., Volume 112 (1990), pp. 737-748 (MR1073007)
[9] On the subalgebra of annihilated by Steenrod operations, J. Pure Appl. Algebra, Volume 127 (1998), pp. 273-288 (MR1617199)
[10] The transfer in homological algebra, Math. Z., Volume 202 (1989), pp. 493-523 (MR1022818)
[11] On the action of the Steenrod squares on polynomial algebras, Proc. Amer. Math. Soc., Volume 111 (1991), pp. 577-583 (MR1045150)
[12] Cohomology Operations, Ann. Math. Stud., vol. 50, Princeton University Press, Princeton, NJ, 1962 (MR0145525)
[13] On the hit problem for the polynomial algebra, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013), pp. 565-568 (MR3095107)
[14] On the Peterson hit problem, Adv. Math., Volume 274 (2015), pp. 432-489 (MR3318156)
[15] Weyl modules and the mod 2 Steenrod algebra, J. Algebra, Volume 311 (2007), pp. 840-858 (MR2314738)
[16] Steenrod squares of polynomials and the Peterson conjecture, Math. Proc. Camb. Philos. Soc., Volume 105 (1989), pp. 307-309 (MR0974986)
Cited by Sources:
Comments - Policy