[Estimations précises de certaines fonctionnelles intégrales sur des classes de fonctions avec une petite oscillation moyenne]
We unify several Bellman function problems treated in [1,2,4–6,9–12,14–16,18–25]. For that purpose, we define a class of functions that have, in a sense, small mean oscillation (this class depends on two convex sets in
Nous unifions plusieurs problèmes concernant la fonction de Bellman traités dans [1,2,4–6,9–12,14–16,18–25]. Dans ce but, nous introduisons une classe de fonctions dont l'oscillation moyenne est petite dans un certain sens (cette classe depend de deux sous-ensembles convexes de
Accepté le :
Publié le :
Paata Ivanisvili 1 ; Nikolay N. Osipov 2, 3 ; Dmitriy M. Stolyarov 2, 4 ; Vasily I. Vasyunin 2 ; Pavel B. Zatitskiy 2, 4
@article{CRMATH_2015__353_12_1081_0, author = {Paata Ivanisvili and Nikolay N. Osipov and Dmitriy M. Stolyarov and Vasily I. Vasyunin and Pavel B. Zatitskiy}, title = {Sharp estimates of integral functionals on classes of functions with small mean oscillation}, journal = {Comptes Rendus. Math\'ematique}, pages = {1081--1085}, publisher = {Elsevier}, volume = {353}, number = {12}, year = {2015}, doi = {10.1016/j.crma.2015.07.016}, language = {en}, }
TY - JOUR AU - Paata Ivanisvili AU - Nikolay N. Osipov AU - Dmitriy M. Stolyarov AU - Vasily I. Vasyunin AU - Pavel B. Zatitskiy TI - Sharp estimates of integral functionals on classes of functions with small mean oscillation JO - Comptes Rendus. Mathématique PY - 2015 SP - 1081 EP - 1085 VL - 353 IS - 12 PB - Elsevier DO - 10.1016/j.crma.2015.07.016 LA - en ID - CRMATH_2015__353_12_1081_0 ER -
%0 Journal Article %A Paata Ivanisvili %A Nikolay N. Osipov %A Dmitriy M. Stolyarov %A Vasily I. Vasyunin %A Pavel B. Zatitskiy %T Sharp estimates of integral functionals on classes of functions with small mean oscillation %J Comptes Rendus. Mathématique %D 2015 %P 1081-1085 %V 353 %N 12 %I Elsevier %R 10.1016/j.crma.2015.07.016 %G en %F CRMATH_2015__353_12_1081_0
Paata Ivanisvili; Nikolay N. Osipov; Dmitriy M. Stolyarov; Vasily I. Vasyunin; Pavel B. Zatitskiy. Sharp estimates of integral functionals on classes of functions with small mean oscillation. Comptes Rendus. Mathématique, Volume 353 (2015) no. 12, pp. 1081-1085. doi : 10.1016/j.crma.2015.07.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.07.016/
[1] Sharp estimates involving
[2] The sharp
[3] Bellman VS Beurling: sharp estimates of uniform convexity for
[4] Bellman function for extremal problems in BMO, Trans. Amer. Math. Soc. (2015) http://www.ams.org/journals/tran/0000-000-00/S0002-9947-2015-06460-5/home.html (in press) | arXiv | DOI
[5] On Bellman function for extremal problems in BMO, C. R. Acad. Sci. Paris, Ser. I, Volume 350 (2012) no. 11, pp. 561-564
[6] P. Ivanishvili, D.M. Stolyarov, V.I. Vasyunin, P.B. Zatitskiy, Bellman function for extremal problems on BMO II: evolution, 2015, . | arXiv
[7] The exact continuation of a reverse Hölder inequality and Muckenhoupt's conditions, Mat. Zametki, Volume 52 (1992) no. 6, pp. 32-44 (in Russian); translated in Math. Notes, 52, 6, 1992, pp. 1192-1201
[8] Some applications of equimeasurable rearrangements, Recent Advances in Harmonic Analysis and Applications, Proc. in Math. & Stat., vol. 25, Springer, 2013, pp. 181-196
[9] Weak integral conditions for BMO, Proc. Amer. Math. Soc., Volume 143 (2015), pp. 2913-2926 | arXiv
[10] Sharp inequalities for BMO functions, Chin. Ann. Math., Ser. B, Volume 36 (March 2015) no. 2, pp. 225-236
[11] Sharp weak type estimates for weights in the class
[12] Bellman function and BMO, Michigan State University, 2004 (Ph.D. thesis)
[13] L. Slavin, The John–Nirenberg constant of
[14] Monge–Ampère equations and Bellman functions: the dyadic maximal operator, C. R. Acad. Sci. Paris, Ser. I, Volume 346 (2008) no. 1, pp. 585-588
[15] Sharp results in the integral form John–Nirenberg inequality, Trans. Amer. Math. Soc., Volume 363 (2011) no. 8, pp. 4135-4169
[16] Sharp
[17] D.M. Stolyarov, P.B. Zatitskiy, Theory of locally concave functions and its applications to sharp estimates of integral functionals, 2015, . | arXiv
[18] The sharp constant in the John–Nirenberg inequality, POMI Prepr., Volume 20 (2003)
[19] The sharp constant in the reverse Hölder inequality for Muckenhoupt weights, Algebra Anal., Volume 15 (2003) no. 1, pp. 73-117 (in Russian); translated in St. Petersburg Math. J., 15, 1, 2004, pp. 49-79
[20] Mutual estimates of
[21] Sharp constants in the classical weak form of the John–Nirenberg inequality, POMI Prepr., Volume 10 (2011), pp. 1-9
[22] An example of constructing Bellman function for extremal problems in BMO, Zap. Nauč. Semin. POMI, Volume 424 (2014), pp. 33-125 (in Russian)
[23] The Bellman function for a certain two-weight inequality: a case study, Algebra Anal., Volume 18 (2006) no. 2, pp. 24-56 (in Russian); translated in St. Petersburg Math. J., 18, 2, 2007, pp. 201-222
[24] Monge–Ampère equation and Bellman optimization of Carleson embedding theorems, Amer. Math. Soc. Transl., Ser. 2, Volume 226 (2009), pp. 195-238
[25] Sharp constants in the classical weak form of the John–Nirenberg inequality, Proc. Lond. Math. Soc., Volume 108 (2014) no. 6, pp. 1417-1434
- Bellman function method for general operators on martingales: arbitrary regular filtrations, St. Petersburg Mathematical Journal, Volume 35 (2025) no. 6, p. 1005 | DOI:10.1090/spmj/1840
- On Locally Concave Functions on Simplest Nonconvex Domains, Journal of Mathematical Sciences, Volume 282 (2024) no. 4, p. 482 | DOI:10.1007/s10958-024-07194-x
- Burkholder meets Gundy: Bellman function method for general operators on martingales, Advances in Mathematics, Volume 410 (2022), p. 108746 | DOI:10.1016/j.aim.2022.108746
- Sharp transference principle for BMO and A, Journal of Functional Analysis, Volume 281 (2021) no. 6, p. 109085 | DOI:10.1016/j.jfa.2021.109085
- Sharp multiplicative inequalities with BMO I, Journal of Mathematical Analysis and Applications, Volume 492 (2020) no. 2, p. 124479 | DOI:10.1016/j.jmaa.2020.124479
- Sharpening Hölder's inequality, Journal of Functional Analysis, Volume 275 (2018) no. 5, p. 1280 | DOI:10.1016/j.jfa.2018.05.003
- Theory of locally concave functions and its applications to sharp estimates of integral functionals, Advances in Mathematics, Volume 291 (2016), p. 228 | DOI:10.1016/j.aim.2015.11.048
Cité par 7 documents. Sources : Crossref
Commentaires - Politique