[Sur l'hyperbolicité des classes homoclines -génériques]
Des travaux de Liao, Mañé, Franks, Aoki et Hayashi ont caractérisé le manque d'hyperbolicité des difféomorphismes par l'existence d'orbites périodiques faibles. Dans cette note, nous annonçons un résultat qui peut être considéré comme une version locale de ces travaux : pour les difféomorphismes -génériques, une classe homocline, ou bien est hyperbolique, ou bien contient une suite d'orbites périodiques qui ont un exposant de Lyapunov arbitrairement proche de 0.
The works of Liao, Mañé, Franks, Aoki, and Hayashi characterized a lack of hyperbolicity for diffeomorphisms by the existence of weak periodic orbits. In this note, we announce a result that can be seen as a local version of these works: for -generic diffeomorphisms, a homoclinic class either is hyperbolic or contains a sequence of periodic orbits that have a Lyapunov exponent arbitrarily close to 0.
Accepté le :
Publié le :
Xiaodong Wang 1, 2
@article{CRMATH_2015__353_11_1047_0, author = {Xiaodong Wang}, title = {On the hyperbolicity of $ {\mathrm{C}}^{1}$-generic homoclinic classes}, journal = {Comptes Rendus. Math\'ematique}, pages = {1047--1051}, publisher = {Elsevier}, volume = {353}, number = {11}, year = {2015}, doi = {10.1016/j.crma.2015.07.017}, language = {en}, }
Xiaodong Wang. On the hyperbolicity of $ {\mathrm{C}}^{1}$-generic homoclinic classes. Comptes Rendus. Mathématique, Volume 353 (2015) no. 11, pp. 1047-1051. doi : 10.1016/j.crma.2015.07.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.07.017/
[1] The set of Axiom A diffeomorphisms with no cycles, Bol. Soc. Bras. Mat., Volume 23 (1992), pp. 21-65
[2] Récurrence et généricité, Invent. Math., Volume 158 (2004), pp. 33-104
[3] On the hyperbolicity of homoclinic classes, Discrete Contin. Dyn. Syst., Volume 25 (2009), pp. 1143-1162
[4] Some non-hyperbolic systems with strictly non-zero Lyapunov exponents for all invariant measures: horseshoes with internal tangencies, Discrete Contin. Dyn. Syst., Volume 15 (2006), pp. 61-71
[5] Periodic orbits and chain-transitive sets of -diffeomorphisms, Publ. Math. Inst. Hautes Études Sci., Volume 104 (2006), pp. 87-141
[6] Partial hyperbolicity and homoclinic tangencies, J. Eur. Math. Soc., Volume 17 (2015), pp. 1-49
[7] Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc., Volume 158 (1971), pp. 301-308
[8] Heteroclinic cycles and homoclinic closures for generic diffeomorphisms, J. Dyn. Differ. Equ., Volume 15 (2003), pp. 451-471
[9] Expansive homoclinic classes, Nonlinearity, Volume 22 (2009), pp. 729-734
[10] Diffeomorphisms in satisfy Axiom A, Ergod. Theory Dyn. Syst., Volume 12 (1992), pp. 233-253
[11] Invariant Manifolds, Lecture Notes in Mathematics, vol. 583, Springer-Verlag, Berlin, 1977
[12] On the stability conjecture, Chinese Ann. Math., Volume 1 (1980), pp. 9-30
[13] An ergodic closing lemma, Ann. of Math. (2), Volume 116 (1982), pp. 503-540
[14] A proof of the stability conjecture, Publ. Math. Inst. Hautes Études Sci., Volume 66 (1988), pp. 161-210
[15] On a conjecture due to Smale, Differ. Uravn., Volume 8 (1972), pp. 262-268
[16] Unfolding homoclinic tangencies inside horseshoes: hyperbolicity, fractal dimensions and persistent tangencies, Nonlinearity, Volume 14 (2001), pp. 431-462
[17] A uniform connecting lemma, Discrete Contin. Dyn. Syst., Volume 8 (2002), pp. 257-265
[18] The selecting lemma of Liao, Discrete Contin. Dyn. Syst., Volume 20 (2008), pp. 159-175
[19] connecting lemmas, Trans. Amer. Math. Soc., Volume 352 (2000), pp. 5213-5230
Cité par Sources :
Commentaires - Politique