We construct a symplectic analog of the Quot scheme that parameterizes the torsion quotients of a trivial vector bundle over a compact Riemann surface. Some of its properties are investigated.
Nous construisons un analogue symplectique du schéma Quot, qui paramètre les modules quotients de torsion d'un fibré vectoriel trivial sur une surface de Riemann compacte, et nous examinons certaines de ses propriétés.
Accepted:
Published online:
Indranil Biswas 1; Ajneet Dhillon 2; Jacques Hurtubise 3; Richard A. Wentworth 4
@article{CRMATH_2015__353_11_995_0, author = {Indranil Biswas and Ajneet Dhillon and Jacques Hurtubise and Richard A. Wentworth}, title = {A symplectic analog of the {Quot} scheme}, journal = {Comptes Rendus. Math\'ematique}, pages = {995--999}, publisher = {Elsevier}, volume = {353}, number = {11}, year = {2015}, doi = {10.1016/j.crma.2015.09.006}, language = {en}, }
TY - JOUR AU - Indranil Biswas AU - Ajneet Dhillon AU - Jacques Hurtubise AU - Richard A. Wentworth TI - A symplectic analog of the Quot scheme JO - Comptes Rendus. Mathématique PY - 2015 SP - 995 EP - 999 VL - 353 IS - 11 PB - Elsevier DO - 10.1016/j.crma.2015.09.006 LA - en ID - CRMATH_2015__353_11_995_0 ER -
Indranil Biswas; Ajneet Dhillon; Jacques Hurtubise; Richard A. Wentworth. A symplectic analog of the Quot scheme. Comptes Rendus. Mathématique, Volume 353 (2015) no. 11, pp. 995-999. doi : 10.1016/j.crma.2015.09.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.09.006/
[1] On the -metric of vortex moduli spaces, Nucl. Phys. B, Volume 844 (2011), pp. 308-333
[2] Gromov invariants for holomorphic maps from Riemann surfaces to Grassmannians, J. Amer. Math. Soc., Volume 9 (1996), pp. 529-571
[3] Sur les points fixes schéma sous l'action du tore , C. R. Acad. Sci. Paris, Ser. I, Volume 309 (1989), pp. 609-612
[4] On the Abel–Jacobi map for divisors of higher rank on a curve, Math. Ann., Volume 299 (1994), pp. 641-672
[5] Automorphisms of the Quot schemes associated to compact Riemann surfaces, Int. Math. Res. Not., Volume 2015 (2015), pp. 1445-1460
[6] Torelli's theorem for high degree symmetric products of curves | arXiv
[7] Effective divisors of higher rank on a curve and the Siegel formula, Compos. Math., Volume 83 (1992), pp. 147-159
[8] Techniques de construction et théorèmes d'existence en géométrie algébrique. IV. Les schémas de Hilbert, Séminaire Bourbaki, vol. 6, 1960, pp. 249-276 (exp. no 221)
Cited by Sources:
Comments - Policy