[Schéma quot et semi-positivité de Ricci]
Soit X une surface de Riemann compacte et connexe de genre au moins deux, et soit
Let X be a compact connected Riemann surface of genus at least two, and let
Accepté le :
Publié le :
Indranil Biswas 1 ; Harish Seshadri 2
@article{CRMATH_2017__355_5_577_0, author = {Indranil Biswas and Harish Seshadri}, title = {Quot schemes and {Ricci} semipositivity}, journal = {Comptes Rendus. Math\'ematique}, pages = {577--581}, publisher = {Elsevier}, volume = {355}, number = {5}, year = {2017}, doi = {10.1016/j.crma.2017.03.012}, language = {en}, }
Indranil Biswas; Harish Seshadri. Quot schemes and Ricci semipositivity. Comptes Rendus. Mathématique, Volume 355 (2017) no. 5, pp. 577-581. doi : 10.1016/j.crma.2017.03.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.03.012/
[1] Équations du type Monge–Ampère sur les variétés kählériennes compactes, C. R. Acad. Sci. Paris, Ser. I, Volume 283 (1976), pp. 119-121
[2] Équations du type Monge–Ampère sur les variétés kählériennes compactes, Bull. Sci. Math., Volume 102 (1978), pp. 63-95
[3] On the
[4] Gromov invariants for holomorphic maps from Riemann surfaces to Grassmannians, J. Amer. Math. Soc., Volume 9 (1996), pp. 529-571
[5] Sur les points fixes schéma
[6] On the Abel–Jacobi map for divisors of higher rank on a curve, Math. Ann., Volume 299 (1994), pp. 641-672
[7] Automorphisms of the Quot schemes associated to compact Riemann surfaces, Int. Math. Res. Not., Volume 2015 (2015), pp. 1445-1460
[8] A generalized Quot scheme and meromorphic vortices, Adv. Theor. Math. Phys., Volume 19 (2015), pp. 905-921
[9] Moduli of vortices and Grassmann manifolds, Commun. Math. Phys., Volume 320 (2013), pp. 1-20
[10] On the Kähler structures over Quot schemes, Ill. J. Math., Volume 57 (2013), pp. 1019-1024
[11] On the Kähler structures over Quot schemes II, Ill. J. Math., Volume 58 (2014), pp. 689-695
[12] On the curvature of vortex moduli spaces, Math. Z., Volume 277 (2014), pp. 549-573
[13] On twistor spaces of the class
[14] Rationally connected manifolds and semipositivity of the Ricci curvature, Ann Arbor, MI, May 16–19, 2013 (C.D. Hacon; M. Mustaţă; M. Popa, eds.) (Lond. Math. Soc. Lect. Note Ser.), Volume vol. 417, Cambridge University Press, Cambridge, UK (2015), pp. 71-91
[15] Structure theorems for compact Kähler manifolds with nef anticanonical bundles, Complex Analysis and Geometry, Springer Proceedings in Mathematics & Statistics, vol. 144, Springer, Tokyo, 2015, pp. 119-133
[16] Quasifaserungen und unendliche symmetrische Produkte, Ann. of Math. (2), Volume 67 (1958), pp. 239-281
[17] (Séminaire Bourbaki), Volume vol. 6, Société mathématique de France, Paris (1995), pp. 249-276 (Exp. No. 221)
[18] Fundamental groups of rationally connected varieties, Mich. Math. J., Volume 48 (2000), pp. 359-368
[19] On the Ricci curvature of a complex Kähler manifold and the complex Monge–Ampère equation I, Commun. Pure Appl. Math., Volume 31 (1978), pp. 339-411
Cité par Sources :
Commentaires - Politique