In this paper, the authors obtain the boundedness of fractional integrals with rough kernel on variable Morrey spaces. The corresponding boundedness for commutators generalized by the fractional integral and BMO function is also considered.
Dans cet article, les auteurs obtiennent la bornitude des intégrales fractionnaires avec un noyau singulier dans des espaces de Morrey (avec exposant variable). De plus, la bornitude des commutateurs généralisés entre ces opérateurs et la multiplication par une fonction BMO est aussi considérée.
Accepted:
Published online:
Jian Tan 1; Jiman Zhao 1
@article{CRMATH_2015__353_12_1117_0, author = {Jian Tan and Jiman Zhao}, title = {Rough fractional integrals and its commutators on variable {Morrey} spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {1117--1122}, publisher = {Elsevier}, volume = {353}, number = {12}, year = {2015}, doi = {10.1016/j.crma.2015.09.024}, language = {en}, }
Jian Tan; Jiman Zhao. Rough fractional integrals and its commutators on variable Morrey spaces. Comptes Rendus. Mathématique, Volume 353 (2015) no. 12, pp. 1117-1122. doi : 10.1016/j.crma.2015.09.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.09.024/
[1] The fractional maximal operators and fractional integrals on variable spaces, Rev. Mat. Iberoam., Volume 23 (2007), pp. 743-770
[2] Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Birkhäuser, Basel, Switzerland, 2013
[3] The boundedness of classical operators on variable spaces, Ann. Acad. Sci. Fenn., Math., Volume 31 (2006), pp. 239-264
[4] Variable Hardy spaces, Indiana Univ. Math. J., Volume 63 (2014) no. 2, pp. 447-493
[5] Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Heidelberg, Germany, 2011
[6] Some properties of fractional integrals, Math. Z., Volume 27 (1928), pp. 565-606
[7] Atomic decomposition of Hardy spaces and characterization of BMO via Banach function spaces, Anal. Math., Volume 38 (2012) no. 3, pp. 173-185
[8] The fractional integral operators on Morrey spaces with variable exponent on unbounded domains, Math. Inequal. Appl., Volume 16 (2013), pp. 363-373
[9] Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent, Rend. Circ. Mat. Palermo, Volume 59 (2010), pp. 461-472
[10] On spaces and , Czechoslov. Math. J., Volume 41 (1991), pp. 592-618
[11] Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., Volume 192 (1974), pp. 261-274
[12] Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal., Volume 262 (2012), pp. 3665-3748
[13] On the theory of spaces, J. Funct. Anal., Volume 4 (1969), pp. 71-87
[14] On a theorem of functional analysis, Mat. Sb., Volume 46 (1938) no. 4, pp. 471-497
[15] Homogeneous fractional integrals on variable exponent function spaces, Acta Math. Sin. (Chin. Ser.), Volume 58 (2015) no. 2, pp. 309-320
[16] Fractional integrals on variable Hardy–Morrey spaces, Acta Math. Hung. (2015) (in press)
[17] Boundedness of fractional integral operators with rough kernels on weighted Morrey spaces, Acta Math. Sin. (Chin. Ser.), Volume 56 (2013) no. 2, pp. 175-186
[18] Variable Besov and Triebel–Lizorkin spaces, Ann. Acad. Sci. Fenn., Math., Volume 33 (2008) no. 2, pp. 511-522
Cited by Sources:
Comments - Policy